.

4

A‘ . + “_ S
NT
ﬁcDUR i&ms:-l.Aﬂow% /
"‘UMENTATION PAGE FormApproved N
-

447 1b. RESTRICTIVE MARKINGS NONE

3. DISTRIBUTION/AVAILABILITY OF REPORT
APPROVED FOR PUBLIC RELEASE;

2t .<es LUWNGRADING SCHEDULE DISTRIBUTION UNLIMITED.

4. PERFORMING ORGANIZATION REPORT

NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/CI/CIA-89-009

STATE UNIVERSITY

AFIT STUDENT AT MISSISSIPP] (if applicable)

** 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

AFIT/CIA

6c. ADDRESS (City, State, and ZIP Code)

7b. ADDRESS (City, State, and ZIP Code)
Wright-Patterson AFB OH 45433-6583

1. TlTLE énclude Security Classification)
ardization of PROG

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION . (If applicable)
' { 8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
. ELEMENT NO. NO. NO. ACCESSION NO.
A
(UNCLAESIEIE)

- Numerlcal Grid Gereration Syster

| 17 PERSONAL AUTHOR)
Agusto Martinez

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
¥ N0 FROM TO 88 December 101

16, SUPPLEMENTARY NOTATION

APPROVED FOR PUBLIC RELEASE 1AW AFR 190-1
ERNEST A. HAYGOOD, lst Lt, USAF
Executive Officer, Civilian Institution Programs

17. COSATI CODES

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP

~

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

DTIC

\ ELECTE

FEB01 1390] B

Qo o0l O/6

29. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
BuncLassiFieEpunNuMIiTED [0 SAME AS RPT] DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL
1 ERN

22b. TELEPHONE (Include Area Code) { 22c. OFFICE SYMBOL

EST A. HAYGOOD, 1lst Lt, USAF (513) 255-2259 AFIT/CI

DD Form 1473, JUN 86

Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

AFIT/ CI "OVERPRINT"

doa

. . |

Standardization of Program EAGLE - Numerical

Grid Generation System

By

Agusto Martinez

A Thesis
Submitted to the Faculty of
Mississippi State University
in Partial Fulfillment of the Requirements
for the Degree of Master of Science
in the Department of Aerospace Engineering

Mississippi State, Mississippi

December 1988

Standardization of Program EAGLE - Numerical

Grid Gennration System

By

Agusto Martinez

APPROVED

s 3. Ol Sl e Cotne

Professor and Head of the Director of Graduate
Department of Aerospace Instruction, College of
Engineering Engineering

A Aatt 2.
rofessor of Aerqﬂbace Dean of the College of

Eng ineering Eng ineering
(Major Professor)

Q%w».m

Dean of the Graduate School

Associate Professor,
Graduate Coordinator,
Department of Aerospace
Eng ineering

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr, Joe F. Thompson
for his guidance and direction,

To my wife whom I love,

Mississippi State University

December 1988

Abstract

Agusto Martinez, Master of Science, 1988

Major: Aerospace Engineering, Department of Aerospace Engineering

Title of Thesis: Standardization of Pprogram EAGLE - Numerical Grid
Generation System

Directed by: Dr. Joe F. Thompson

Page in Thesis: 101 Word in Abstract: 122

Abstract
N
This thesis describes the conversion of Program EAGLE ~ Numerical
Grid Generation System to ANSI FORTRANTT standards; The Development of
the NAMELIST input emulator for Program EAGLE; and the modifications and
additions allowing interactive/non-interactive execution of Program
EAGLE. All the work being done on an IRIS U4D/T70GT computer graphics
workstation, Description of additional wuser supplied inputs for
improved input flexibility is also given as well as a discussion of the
logic implemented in the routines used by the NAMELIST input emulator.
Results are presented for three generic airframes demonstrzting the

capabilities of Program EAGLE as an IRIS U4D/TOGT computer graphics work- &

station. Results discussing the porting of the standardized version of

-
- e s—

the EAGLE code to a SUN 4/280 computer system are also presented

— ,f’{ SO
7 y),7 ; M,w,‘(}'},!j ‘ﬂ‘,r‘, ,7-,‘/'(‘7-..'/ U\J d{!m‘ A -5 , -
x«nn'rﬂny Cotes
Z\v T hereed— C?N"Ja/" o g ;;%
ey

i At “end] or
Specl

Al

- —

Dist

Acknowledgements, . .

Abstract. . . « + .

Table of Contents . .

List of Figures . . .

Chapter
1.

2'

Introduction

Developments .

2.1
2.2
2.3

User Inputs

Generalized Parser/NAMELIST Input

.

Table

Conversion
Interactive Logic.
Generalized Parser/NAMELIST Input Emulator . .

of Contents

.

* . L3

e & o e o & & o s o s o

Emulator Operation . . . + + ¢« + « &

4.1
4,2
4.3

FNDCHR

CHRVAL
CONVER
CCI, CCR

FNDINT, FNDRL.

ELEMNT .

ILEN, ISI

5.1 Applications .

5 1.1
5.1.2
5.1.3

5.2 Porting.

.

yA

Elliptic Missile
Ogive - Cylinder
Elliptic Airframe with Conbtrol Surfaces,

iii

»

e e & o & o

Ogive

Parameters, Variables and Arrays
Program Configuration/Setup. . .
Subroutines and Functions, , , |

e ® e ® e e o

with fins

s * e v

Page

ii

iii

-1 U

1

17

18
22
25

26
28
29
29
30
31
31

32
32
32
33
34

36

6. COnclusionS: v +« « v o o ¢ o s & »
.References. T
Figures . v o o ¢« ¢ ¢ v o o o o s o s o o »
AppendiCesS., « o 4 « 4 ¢ o s o s b e 4 s s

A, Sample Program Set~Up Listing. . .

B. Generalized Parser/NAMELIST Input.
Emulator Listing -

iv

Page

37
38
40
63
63
68

figure
Figure

Figure

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure

2a -

2b -

3a -
3b -

Ja -

b -

6a -

6b -

Ta -

7b -

10a
10b
11a
11b

12a

List of Figu;es

Elliptic missile surface grid
Side view of elliptic missile field grid

Close-up side view of elliptic missile
field grid

Front view of elliptic missile field grid
Close-up front view of elliptic missile field grid

Perspective view of overall elliptic missile field
grid

Close-up perspective view of elliptic missile field
grid

Ogive-Cylinder-0Ogive with fins surface grid

Side view of Ogive-Cylinder-0Ogive with fins field
grid

Close-up side view of Ogive-Cylinder-Ogive with fins
field grid

Front view of Ogive-Cylinder-0Ogive with fins field
grid

Close-up front view of Ogive-Cylinder-0Ogive with
fins field grid

Close-up perspective view of Ogive-Cylinder-Ogive

with fins {ield grid

Elliptic airframe with control surfaces surface grid
Front view of elliptic airframe field grid

Close~up front view of ellipﬁ}c airframe field grid
Side view of elliptic airfréme field grid

Close~up side view of elliptic airframe field grid
Top view of elliptic airframe field grid

v

Page

41
42

43

4y
45
46

47

48

49
50
51
52
53

54
55
56
57
58

Page

Figure 12b - Close-up top view of elliptic airframe field grid 60
Figure 13a - Perspective view of elliptic airframe overall 61

field grid '
Figure 13b - Close-up perspective view of elliptic airframe 62

overall field grid

vi

Chapter 1

Introduction

With the advent of large-scale computing machines (Cray X-MP, CRAY
2, ete.), numerical techniques in computational fluid dynamics (CFD) are
now able to solve for the flow field surrounding complex airframe con-
figurations‘. Numerical grid generation has been cited as a major pac-
ing item for realistic aircraft/missile applications2 and enables
researchers to discretize the domain about arbitrarily-shaped geo-
metries,

Considerable progress has been made in surface (boundary) and grid
(mesh) generation3'6. These advances allow for the application of
multi~block elliptic grid generation techniques to complex aerospace
vehicles as well as to other complex configurations from other disci-
plines (i.e. electromagnetics, hydrodynamics, etc.).

In 1987, the CFD community saw the introduction of a generalized
three-dimensional arbitrary geometry grid generation code called Program
EAGLE - Numerical Grid Generation System7’8. Program EAGLE is a composg-
ite (multi-block), algebraic and elliptic grid generation system de-
signed to discretize the domain in or around any arbitrarily shaped
three-dimensional region. The code combines a three~dimensional, sur-

face generation scheme with a multi-block, three-dimensional

boundary-conforming elliptic grid generation scheme.

The surface generation system of Program EAGLE serves as a front-
end to the grid generation system. The surface generation routine de-
velops surfaces (or curves in 2D) to be input to the grid generation
routine as segments of the boundary of the region within which the grid
is to be constructed!??,

The grid generation system is a general two or three-dimensional
algebraic and elliptic grid generation routine based on a block struc-
ture, which allows any number of blocks to be used to f£ill an arbitrary
two or three~dimensional region10. Any block can be linked to any other
block (or to itself) with complete (or lesser) continuity across the
block interraces as specified by input. This routine uses an elliptic
generatjon system with automatic evaluation of control functionsg. These
are evaluated either directly from the initial algebraic grid and then
smoothed, or interpolated from the boundary point distributions7'8'9’1o.

Other features of the surface generation routine and the grid gen-
eration routine are discussed in detail in References 9, 10, 11, and 12,

Program EAGLE was initially developed to execute on large~scale
compubing machines (supercomputers) in a non-interactive environment7'8.
Since its introduction, though, interest has increased in developing
interactive grid generation programs to execute on engineering computer
workstatvions, as well as mini-super computers and also supercomputers
(such as the Cray 2). The increased power and capabilities of these
computer systems have further sparked the interest of computational
fluid dynamicists and computational aerodynamicists in developing nu-

merical grid generation techniques in an interactive environment.

Thus, the objective of this work is to develop an interactive/non-
interactive, portable, user-oriented version of the EAGLE code on a
state-of-the-art computer workstation, and to demonstrate the capabilities
of the interactive version of the code using complex aerospace configu-
rations, A design criterion wae that changes made in the code be trans-
parent to the user and not require any changes of the inputs to the
EAGLE code,

The purpose of this thesis 18 to describe this effort to
knowledgeable users of Program EAGLE interested in wusing the
standardized interactive version of the EAGLE code. This thesis can
and should be considered as a user’z manual of the standardized
interactive version of the EAGLE code and as a supplement to the user's

manual of Program EAGLE in Reference 9.

Chapter 2

Developments

Program EAGLE ~ Numerical Grid Generation System was originally de-~
veloped for the Cray 1 and Cray X-MP supercomputing systems7. The most
recent version of Program EAGLE has continued to be developed on the
Cray X~MP and Cray 2 computer systemsg. The code is written in the FOR-
TRAN language available on these systems and uses the NAMELIST input ex-
tension also available on these systems7’9.

Although Program EAGLE is written in the FORTRAN language, it does
not completely follow the FORTRANTT standards13*1u. Following these
standards will allow codes to be ported over to other computer systems
having the FORTRANT7 language compilar in a much easier fashion, i.e.
codes can compile and execute with little or no modifications on differ-
ent computer systems,

The other problem of Program EAGLE is that it uses the Cray NAME-
LIST Input extension15. This feature is very beneficial in that it al-
lows users to supply the inputs into the code by scecifying the
appropriate variables with their reans-tive values in any order in the
input line., This makes the list of inputs much easier to understand and
reduces the reliance on the user's manual that would be required if the
inputs were structured (i.e., list - directed and/or formatted inputs).
As mentioned earlier, NAMELIST input is an extension and not a standard
of FORTRANT7. Therefore, not all computer systems carrying the
FORTRANT7 compiler have this feature or extension (for example, computer

workstations, such as the IRIS~4D/T70GT, and others).

To be able to satisfy the stated objectives, then, requires the
EAGLE code to be converted to the FORTRANTT language standards, This
also means either elliminating the NAMELIST input fzature or writing a
NAMELIST input emulator (in FORTRAN77 standard). To ensure the changes
made in Program EAGLE are transparent to the uger required that a

NAMELIST input emulator be written.
2.1 -~ Conversion

Converting Program EAGLE to FORTRANTT standards!3 required that
both routines of the numerical grid generation system (i.e., surface and
grid generation routines) be converted independently and compiled cor-
rectly. Since both routines have similar logic, converting the first one
was the most time consuming and most difficult, the reason being that
knowledge and experience had to be gained of the logic and the routine's
operation. Once this knowledge and experience was gained, the second
routine was converted quite easily and quickly to FORTRAN77 standards.

The most obvious first step was to eliminate the Cray NAMELIST in-
put extension within the codes. The next step required changes in using
Hollerith (or character) strings. FORTRANT? standards do not accept
Hollerith strings but does use character strings instead, This was the
major portion of the conversion.

Converting from Hollerith to character manipulation required all
character, integer and real variables to have only character, integer
and real values, respectively. This waes accomplished by specifying

variables of type CHARACTER to be character variables, variables of type

INTEGER to be integer variables and variables of type REAL to be real
variables, To allow the user the flexibility of specifying character
values for integer and real variables, the character values are con-
verted to unique integer (or real, respectively) values. These values
are set in PARAMETER or DATA statements in the main portion of each rou-
tine. Note that these unique numbers can and may need to be changed to
accommodate the computer system on which these routines are to execute,

FORTRANT7 does not allow character values to be embedded in common
blocke where integer and/or real variables exist within the same common
block. Therefore, all character variables were removed from these com~
mon blocks and passed to all the necessary routines through the CALL and
SUBROUTINE statements. Separate common blocks for these character vari-
ables could have been included. But, as the development of the NAME-
LIST input emulator was initiated, it was easier to include the charac-
ter variables in the CALL and SUBROUTINE statements instead of common
blocks.,

With the major part of the conversion completed, other smaller
modifications were still needed to allow proper compilation and execu~
tion. One of these included the removal of various DATA statements for
variables residing in common blocks, FORTRAN77 does not allow initi-
alization of variables residing in common blocks by DATA statements un-
less the BLOCK DATA subprogram feature is used. Again, because of the
development of the NAMELIST input emulator, it was easier to initialize
these variables using executable statements at the beginning of the pro-

gram ingstead of using the BLOCK DATA subprogram feature of FORTRANTT.

Other changes to the routines were made to follow suggestions and
guidelines given in Reference 14, One of these is to use the generic
names of intrinsic functions wherever possible, Where intrinsic fune-
tions are used within the routines, the names of these functions were
changed to their generic names from their specific names wherever possi-
ble,

Another change included the ¢pening and closing of files within the
routines instead of allowing the system to open and close them. This
gives the user greater flexibility and control over the files needed.

After all these changes were accomplished, Program EAGLE compiled
correctly on the IRIS 4D/T0GT computer graphics workstation., The next
steps invelved the development of the interactive logic and finally the

NAMELIST input emulator,

2.2 Interactive Logic

The logic of Program EAGLE is such that converting the code to in-
clude interactive processing was relatively simple with minimal changes.

First, a status indicator (ISTAT) wae included to indicate the er-
ror status - zero (0) for no error {(default, of course), a negative one
(-1) for a "hard" error and a positive one (1) for a 'soft" error. A
"hard" error occurs, for example, when the problem size has exceaded
preset dimensions, thus terminating execution. A "soft? error occurs

when the inputs are incorrect or missing. The routines then prompt the

user to retype the input line correctly. A "soft" error behaves just
like a "hard" error in the non-interactive or batch mode (Reference 9
has details on the errors that may occur).

This variable ISTAT (either set to 1 or -1) with a GO TO statement
replaces the STOP statements found in the original version after an er-
ror has been determined. This allows execution to return to a central
location within the routines and determines the next course of action
depending on the value of ISTAT.

Lastly, the variable IBATCH determines whether interactive or non-
interactive processing is to take place. A value of zero (default) in-
dicates interactive execution, while a value of one (1) indicates non-
interactive execution of the code. Note that if IBATCH is set to one
(1) and interactive execution is attempted, the program will behave as
if it is executing non-interactively. Therefore, any errors (hard or
soft) will terminate execution. IBATCH also controls the writing of the
prompt to standard output. A value of one (1) will not write the

prompt,
2.3 Generalized Parser/NAMELIST Input Emulator

The FORTRANT7 does not have a NAMELIST input feature included as a
standard., NAMELIST input exists, only as an extension available on some
computer systems. Also, NAMELIST input may not be the same between sys-
temz having this feature, thereby, making the original EAGLE code dif-
ficult to port over to various computer systems, especially systems

which do not have the NAMELIST input feature available, To be able to

8

port Program EAGLE to different computer systems, and enable users to
use their previously develcoped input lists, a generalized parser was
written to emulate the Cray NAMELIST input feature15.

The inclusion of the emulator into the EAGLE code (i.e, into the
surface and grid generation routines) did not change, alter or modify
the structure of the code; however, additional arrays were required. The
addition of these arrays does not increase the memory requirements sig-
nificantly, since the additional arrays are single-dimension arrays that
are two orders of magnitude smaller than the arrays already present in
the code,

The inclusion of the emulator does require additions into the call-
ing routines. Although not as simple as adding the NAMELIST input fea-
ture into a code as described in Reference 15, the additions are not
complex. These additions are non-executable statements such as PARAME-
TER, DIMENSION, EQUIVALENCE and DATA statements,

Other additions include the two CALL statements to the parsing rou-
tines of course, The first CALL statement calls the subroutine RDSTRG
which reads in a line as a character string with a maximum of 132 char-
acters, The character string is then passed into the calling routine to
be passed to subroutine PARSER, which is the actual NAMELIST input emu-
lator.,

vnce control returns to the calling routine, the inputs are passed
into the necessary variables by use of EQUIVALENCE statements. The fact

that EQUIVALENCE statements were needed to communicate from the parser

te the calling routines required that some of the labeled common blocks
be removed or modified due to the restrictions imposed by using common
blocks and EQUIVALENCE statements,

All the additions and/or modifications made can be identified in
the routines by searching for the line(s) containing the dake in which
the additions (and/or modifications) were done followed by the charac-
ters "<gus AMD". The end of the sections with the additions and/or
modifications is signified by a line beginning with a "C" followed by a

string of asterisks.

10

Chapter 3

User Inputs

All inputs are given in the NAMELIST input format of the form
E$INPUT ITEM = 'operation', quantity = value, ...$
The "E" in column 1 indicates to print (or echo) the input line onto the
output fiie. If the "E" is omitted, then column 1 must either be blank
or have a "C" (meaning to ignore this line).

The first dollar sign ($) indicates the beginning of the input
line, while the second one signifies the end of the input line. The
name of the NAMELIST follows the first dollar sign, with a required
space after the name. INPUT is the name of the NAMELIST in this exam-
ple. The names used for the NAMELIST in this version of the EAGLE code
are SINPUT - for inputs to the surface generation routine - and GINPUT
and GOUTPUT ~ for inputs to the grid generation routine.

ITEM = 'operation' designates the desired operation, while the val-
ues relevant to this operation follow (i.e., quantity = value). In
this specification, "quantity" refers to the variable or name of the
input quantity, and "value" is its value.

Values for arrays can be given in one of two ways, They are

eos, quantity = value, value, valus,..,
or
ey qQuantity = N*va;ue,.;.
where N is the number of values, Alse, a value for a particular element
of an array can be specified by the use of the notation

ceey quantity (M) = value

11

where M indicates the element of the array.

Quantities (variables) of type CHARACTER can only ts given charac-
ter values (with a maximum of 64 characters)., Quantities of type INTE-
GER and REAL can be given integer and real values, respectively, as well
as specific character values allowed by the code (see Reference 9, Vols
II and III, for these specific values). Presently, the NAMELIST input
emulator is not able to accept exponential notation (i.e., 1.0E-O4) as
input,

For the purpeses of clarity, an input line can consist of any numr
ber of (continuation) lines where each line has a maximum of 132 charac-
ters (columns) and the first column must be blank. This enables an
input line to have as many lines as needed, as long as the first line
has the dollar sign in the second column and the last line has the sec-
ond dollar sign signifying the end of the input line. Also, all inputs
must be in capital letters unless specifyving a filename. The filename
in quotes can be lower or upper case letters, And finally, single quotes
must be used for all character input values,

Adding the capability of interactive execution has allowed the user
to have greater ocontrol over the execution of the code by the addition
of three new operations.

The first operation allows the user to save a session. The input
line looks like tne following example:

E$SINPUT ITEM = 'SAVE', FILNAM = 'filename' $

12

where "filename" is the name of a file consisting of no more than 64
characters (includes alpha-numeric characters and symbols). This input
line should be the first line of input. This feature only operates in
the interactive mode., Each input line following this line will be writ-
ten to the specified file (i.e., "filename").

The second operation allows the user to read in a previously saved
session or a previously developed input file. This input line looks
like the following example:

E$SINPUT ITEM = 'READ', FILNAM = 'filename'$
Once again "filename" is the name of the file to be read in by the code.
This input line will cause the inputs to be read in from a file by the
name of "filename" instead of reading the inputs from the screen (or
standard input).

The third operation available allows the user to terminate execu-
tion when desired without necessarily providing all the required inputs
for a particular problem. The input line looks like the following:

E$SINPUT ITEM = 'STOP'$
This will terminate execution and save all the necessary files if this
line is not encountered within an input file, In other words, the exis-
tence of this line in an input file from which the inputs are being read
will terminate reading the inputs from this file, and then will expect
the rest of the inputs to come from the screen (or standard input).

Other optione added to Program EAGLE give the user greater flexi-
bility in choosing the type of output desired. Within the surface and

grid generation routines the user has the option of specifying the

13

filenames on input, or using the default filenames of the files to be
written or read in, This can be done by including the following in the
input line:
eesy FILNAM = 'filename’,...

where "filename" is the name of the file to be written or read in.

For example, an input line to the surface generation routine may
look like this:

E$SINPUT ITEM = 'COMBINE', COREIN = 1, -5,
FILEOUT = 1, FILNAM = 'BLOCK1'$
This input line will combine the segments stored in cores 1 thru 5 and
write them out on the file named "BLOCK1", The grid generation routine
can then read in this file with the following example input line:
E$GINPUT ITEM = 'FILE', FILE = 11, FILNAM = 'BLOCK1',...$

Another additional feature allows the user to select the output
from the grid generation routine in the form needed to be read in by the
NASA-AMES graphics program called PLOT3D., To select this feature, the
user must include the following in an input line:

+ss, OUTER = 'PLOT3D', ...
This option is generally selected when the file on which the grid is to
be written is specified. For example:
E$GINPUT ITEM = 'STORE', FILE = 72, F;LNAM = 'FILET2.fmt’,
OUTER = 'PLOT3D'$

Selecting the output feature "PLOT3D" will write formatted records to
the FQRTRAN file T2, which has the filename "FILET2.fmt" in the form

needed by PLOT3D.

14

OUTER = 'PLOT3D' allows two options, One option allows the user to
write to the file without a blanking array (default), and the other op=
tion will allow the user to write to the file with a blanking array. To
select the second option the user must specify the operation ITEM =
'BLANK' and its associated quantities and values in the output phase of
the grid generation routine., For example, an input file to the grid
generation routine selecting the PLOT3D option with blanking may look

like the following:

E$GINPUT ITEM = 'STORE', FILE = 72, FILNAM = 'FILE72.fmt',
OUTER = 'PLOT3D' $

E$GINPUT ITEM = 'END' $
E$GOUTPUT ITEM = 'BLANK', BLOCK = 1, START = 1,1,1,

END = 65,1,31, VALUE = 2 §

E$GOUTPUT ITEM = 'END' $

In this input list, file 72 will have the filename of "FILE72.fmt", and
the records will be written formatted in tlre form needed to be read in
by the program PLOT3D. With the operation ITEM = 'BLANK' selected,
file 72 will also contain an integer array called IBLANK specifying

which points are to be 'blanked'. In this example, in block 1 the

15

points starting at 1,1,1 to 65,1,31 will have an integer value of 2
(VALUE=2) stored in the IBLANK array. Any integer value besides zero
(0) in the IBLANK array will tell the PLOT3D program to draw that point
on the screen. Any integer value can be specified in the quantity

VALUE. The default though is one (1).

16

Chapter U

Generalized Parser/NAMELIST Input Emulator Operation

Aé ment ioned earlier, Program EAGLE was originally written to use
the Cray NAMELIST inout extension7'9, which is not available on all
computer systems, Therefore, to ensure uniformity of inputs on all com-
puter systems, and to allow input lists previously developed to be used
without making changes to these lists, a generalized parser/NAMELIST
input emulator was written. This emulator generally follows the basic
rules of use of the NAMELIST input extension specified in Reference 15.
Several basic guidelines will be stated here, however, for the purpose
of clarity.

All upper-case letters must be used except when specifying file-
names. The filenames can be given in lower or upper-case letters, Sin-
gle quotes must be used everywhere.

An input line can consist of any number of lines, where the maxi-
mum number of characters per line is 132, An input line begins with a
dollar sign ($) in column two (2), and is terminated with a second dol-
lar sign at the end of the input line, regardless of how many lines make
up the input line. Each line after the first line of the input line
must start on or after column two (2).

Column three (3) of the first line must begin with the name of the
input list (the NAMELIST name), and a blank must separate the name with
the actual beginning of the inputs. Blanks can be used throughout bo
make the inputs more legible, but blanks cannot appear within variable

names or between single quotes when specifying character values.

17

Column one (1) must be blank or have either an "E" or a "C". An
ME" in column one (1) indicates to write the input line to standard out-
put. A "C" in column one (1) means to ignore this line; however, this

line will be written to standard output.

4,1 - Parameters, Variables and Arrays

The operation of the parser/NAMELIST input emulator is basically
divided into two major routines. The first, subroutine RDSTRG, reads in
a character string while the second, subroutine PARSER, takes this
string, checks it and then parses it to the appropriate variables,

In the routine RDSTRG the variable STRING is the character string
to be read in, with the actual maximum character length being specified
by the variable ISTRNG., The variable NSTRNG provides the maximum al-
lowed character length for the variable STRING. Note that NSTRNG should
be less than or equal to ISTRNG., The variable IREAD determines whether
to read from a file (IREAD = 1) or from standard input (default)., The
variable ISTAT specifies the error status - zero (0) means no error
while any other number (say, 1 and -1) indicates an error has occurred,
The variable LCT is the actual length of the character string read in.
The variables STRING, LCT and ISTAT are passed back to the calling rou-
tine.

The character string STRING is then passed from the calling routine
into subroutine PARSER through the CALL and SUBROUTINE statements for
parsing., The parameters NVAR, NCHAR, NINTG and NREALS are used to di-

mension the arrays in subroutine PARSER., NVAR 1s the total number of

18

variables the user can supply as input. This parameter is the sum of
the other three parameters, NCHAR, NINTG and NREALS. These three are
the total number of characters, integers and real variables, respect-
ively, that the user can supply as input.

The three paramete-s NCVAL, NIVAL and NRVAL are the total number of
characters, integer and real values, respectively, that can be supplied
during input. The difference between these three parameters and the
previous set of parameters is that these three parameters contain the
sum total of all the elements of the arrays of the input variables,
NCVAL, NIVAL and NRVAL can be the same as NCHAR, NINTG and NREALS if all
the variables which can be supplied during input contain only one ele-
ment (i.e., all the variables are not arrays).

The last three parameters are NDAT, NIDAT, and NRDAT, The sum of
NIDAT and NRDAT gives NDAT - the totzl number of integer (NIDAT) and
real (NRDAT) data constants set in the calling routine. These are used
for the purpose of specifying character values for integer and real
variables. The parser then knows to convert supplied character strings
into unique integer and real numbers.

The arrays needed by subroutine PARSER are NAMLIS, NDIM1, NDIM2,
ICHR, INTGR, REALS, CDATA, IDATA, RDAT, and CPOS, IPOS, RPOS. The char-
acter array NAMLIS is dimensioned to NVAR and contains the list of input
variable names organized with input variables of type CHARACTER first,
type INTEGER next, and type REAL last. This array is used to check the

input and see that the supplied variable exists in the NAMELIST.

19

The integer arrays NDIMi and NDIM2 are dimensioned to NVAR and hold
the lower and upper bound dimensions, respectively, of all the
variables, The values within these arrays are organized in the same
manner discussed above. A two-dimensional array will have the upper
bound of its dimension set to the total number of elements within that
array. These arrays are used to ensure that no more than the required
number of values are passed into their respective variables.

The arrays ICHR, INTGR and REALS are character, integer and real
arrays, respectively, which hold the values of all the variables. These
arrays are then passed back into the calling routine and equivalenced to
the appropriate variables. These arrays are dimensioned to NCHAR,
NINTG, and NREALS, respectively.

The character array CDATA contalins the names of the constants set
in the calling routine. This array is used to check the input and see
that the supplied character inputs to integer and real variables are
present within this array. The array CDATA is dimensioned to NDAT.

The arrays IDAT and RDAT are integer and real arrays, dimensioned
to NIDAT and NRDAT, respectively. These arrays contain the unique inte-
ger and real constants which will be passed to the appropriate variables
when character values are supplied to integer and real variables.

The last three arrays are CPOS, IP0S, and RP0OS. These three are
integer arrays dimensioned to NCHAR, NINTG and NREALS, respectively. The
purpose of these three arrays is to hold actual array positions withnin
the three arrays ICHR, INTGR and REALS, respectively. 1In other words
CPOS, IPOS and RPOS act as pointers for the parser to place the values

in the proper position in the respective arrays.

20

The last set of arguments needed by subroutine PARSER consists of
two character strings - STRING and NAMLST - and several integer vari-
ables., The first character string called STRING is passed from the rou-
tine RDSTRG to the calling program and then to subroutine PARSER. The
gecond character string, NAMLST, holds the name of the NAMELIST input.
This variable can be an array holding different names of the NAMELIST
input, This is demonstrated in the grid generation routine of the EAGLE
code,

The integer variable NDS, indicates where the second dollar sign is
located in the character string STRING. If none is found then NDS is
set to zero (0), the default.

The variable L maintains a sum total of the lines read in per input
line, The default value for L is one (1).

The integer variable INL stores the number of the last input vari-
able found in STRING. INL also has a default value of one (1),

The next variable, ITEXT, keeps track of the number of values sup=-
plied for the last input variable in STRING.

The variable IECHO is a print (cr echo) indicator which is set to
one (1) when an "E" is present in column 1 of the first line of the in-
put line. The default value for IECHO is zero (0).

The variable LS and LT store the character lengths of the character
strings STRING and TEXT, respectively. (TEXT stores the name of the
input variable.) Both have default values of one (1),

The variable NL serves as a search pointer indicating where in the
character string STRING the search last ended. Its default value is one

(1).

21

The next variable NJ stores the total number of elements within an
array, This variable is used to ensure that the value stored in ITEXT
is less than or equal to NJ. Again, the default value for NJ 18 one
(1).

IEQUAL indicates whether an equal sign 1is present. A value of one
(1) means an equal sign was found, while a value of zero (0) means no
equal sign is present.

The penultimate variable, NUM, indicates to multiply the given
value by an integer number when the value for NUM is one (1).

The last variable in the argument list (ISTAT) is the status indi-
cator discussed earlier,

All these parameters, arrays and variables are needed by the gen-
eralized parser/NAMELIST input emulator to successfully parse the in-
puts. Only the character string STRING and the three arrays storing all
the inputs = ICHR, INTGR and REALS arrays - are used by the calling rou-

tine.

4,2 Program Configuration/Set-Up

To be able to use this emulator, several non-executable statements
must be added to the calling routine)as well as two CALL statements to
the routines which read in the lines of input (subroutine RDSTRG) and
which parse these inputs to the appropriate variables (subroutine
PARSER). Appendix A has a sample listing of all the statements which
need to be added to the calling routine. The following paragraphs will

discuss the needed statements.

22

To begin with, several arrays and the variable STRING must be
specified as type CHARACTER. The character length of STRING must match
the value specified for the variable ISTRING in the PARAMETER statement.
The value for NSTRING can be set to ISTRNG or to a lesser value as evi-
denced in Appendix A.

Next, PARAMETER statements containing the values for the variables
NCHAR, NINTG, NREALS, and NCVAL, NIVAL, NRVAL and NRDAT are required.
Also, PARAMETER statements will be needed to initialize the variables

NVAR and NDAT. NVAR is defined by the equation

NVAR = NCHAR + NINTG + NREALS

and NDAT is defined by the equation

NDAT = NIDAT + NRDAT
These statements set up the dimensions needed by the arrays used by the
routine PARSER,

The next item is to dimension the arrays needed by the parser. The
arrays NAMLIS, NDIM1 and NDIM2 are dimensioned to NVAR, The arrays
ICHR, INTGR and REALS are dimensicned to NCVAL, NIVAL and NRVAL, respec-
tively. The arrays CPOS, IPOS and RPOS are dimensicned to NCHAR, NINTG
and NREALS, respectively. The last three arrays CDATA, IDAT and RDAT
are dimensioned to NDAT, NIDAT and NRDAT, respectively.

After the DIMENSION statements comes the setting up of the communi-
cation between the three arrays returned by the parser - ICHR, INTGR and
REALS ~ and the variables used by the calling routine, This is accom-
plished by using EQUIVALENCE statements. One set of these statements

passes the values ih the character array ICHR into the appropriate charac-

23

ter variables, The next set passes the integer values in the ar-
ray INTGR into the appropriate integer variables. And finally, the
third set of statements passes the real values in the array REALS into
the appropriate real variables,

The last set of EQUIVALENCE statements passes unigque integer and
real numbers to the parser through the arrays IDAT and RDAT, respect-
ively, This last set of statements is required only if character val-
ues are to be supplied during input to integer and real variables.
These unique numbers should be set either in PARAMETER statements or
DATA statements,

The last set of statements =~ DATA statements - initialize the ar-
rays NAMLIS, NDIM1, NDiIM2, CPOS, IPOS and RPOS, as well as initializing
the unique numbers and the default values for the variables needed in
subroutine PARSER.

After completing the set-up of the non-executable statemente, the
section which reads the inputs and then parses the inputs must be added.
The first CALL statement is to the routine RDSTRG which reads the input
(as a character string), checks its length and returns the character
string STRING. The second CALL statement is to the routine PARSER where
the character string STRING is passed into it, and the input values are
returned in the three arrays ICHR, INTGR and REALS. The character
string STRING can be used by the calling routine since it is not changed
in any way. These CALL statements should be placed after initializing

the defaults and prior to testing for correct input values.

24

4,3 Subroutines and Functions

Subroutine PARSER not only governs the parsing of the inputs but
also has the logic necessary to emulate the Cray NAMELIST input fea-
ture15. This logic is the first thing which the character string STRING
goes through.

Initially the search pointer NL is set by using the name of the
NAMELIST (NAMLST), and the character length of STRING is also determined
and placed in the variable LC.

The first section of the logic ensures that columm one (1) is blank
or has either an "E" (writes the character string STRING to standard
output) or a "C" (the line is ignored and written out to standard out-
put and execution is returned to the calling routine). After this test,
a dollar sign ($) is searched for in column two (2). If found then the
search continues for the second dollar sign indicating the end of the
input line, If this second dollar sign is not found in the first line
(L=1) of the input line, the variable LS is set to the character length
of STRING (LC). Other subsequent lines will he tested until the second
dollar sign is found, thus terminating the input line,

The next test in the logic looks for the name of the NAMELIST
(NAMLST) in STRING starting from column three (3) up to the column
specified by the search pointer NL. After satisfying this condition, a
blank in column NL+1 is searched for, and then NL is reset to its proper

position in STRING.

25

The next part in subroutine PARSER will put together a string of
characters in the character string TEXT and then check it against the
list (NAMLIS) to debtermine if the supplied input variable is a valid
input. If =0, the variable INL specifies which input variable, and sets
the maximus number of elements (NJ) and the element pesition within one
of the three arrays (ICHR, INTGR or REALS) for that particular input
variable. Firally STRING, LS, NJ and one of the three arrays are passed
into one of the three routines (FNDCHR, FNDINT or FNDRL) for parsing,

depending on the value in INL,

4.3.1 FNDCHR

Subroutine RNDCHR searches for a character value within the charac-
ter string STKING, starting from the last position of the pointer (L) to
the end of the string (LS) or until the character value has been found,
whichever comes first,

The routine begins by searching for the equal sign after the input
variable. Generally, the variable L will point to a position in STRING
which is a blank or has an equal sign (=) initially. If the equal sign
is not found prior to reaching the end of the string, execution will
return to the routine calling the parser.

After finding the equal sign, the character value is found in
STRING by searching for a set of single quotes ('). Once the first sin-
gle quote is found, routine CHRVAL is called to get the position of the
second single quote within STRING, thus indicating a character value is

present, The character value is then stored in the array IC, providing

26

that the number of values found (ITEXT) does not exceed the number al-
lowed (NJ). The search pointer (L) is then updated, and control is re-
turned to the beginning of the routine to determine if more values are
present,

Ir, after rinding the equal sign, a number followed by an asterisk
(indicating multiplication) is found, then the upcoming character value
will be repeated in the array IC the number of times specified by this
number.

This number must be an integer and is stored as a character string
in TEXT to be later converted to an integer number. Then the search
continues for the asterisk (*)., Finding the asterisk, routine CONVER is
called to convert the character string in TEXT to a number which is
stored as an integer number in ITEXT, If ITEXT is less than or equal to
the value in NJ then the variable NUM is set to one (1), and the search
continues for the character value as described above, This time,
though, the character value is stored ITEXT times in the array IC.

The search is terminated and control is returned to the parser once
a comma and a character after the comma is found not satisfying any of
the conditions, and the value in ITEXT is less than or equal to the

value in NJ.

4,3.2 FNDINT, FNDRL

Subroutines FNDINT and FNDRL search for an integer or real value,
respectively, within the character string STRING, starting from the last

position (L) to the end of the string (LS), or until all the integer or

27

real values have been found for the specified input variable. Both rou-
tines function similarly, with the exception that subroutine FNDRL re-
quires searching to include a decimal point (.). Alse, both routines
use the same logic used in subroutine FNDCHR to determine when the input
values are being specified. In other words, an equal sign is found
first, and then the input values come after the equal sign.

After finding the equal sign, an integer (or real) value is found
in STRING by searching for a character between the number zero (0) and
nine (9), or a plus (+) or minus (~) sign. In subroutine FNDRL the
gsearch also includes a period (.). Once any of these symbols are de-
tected, they are placed in the character string TEXT as characters until
a comma (,) is found, Then TEXT is converted to an integer (or real) value
by the routine CONVER and stored in the array IC if the number of input
values (ITEXT) does not exceed the maximum specified by the variable NJ.

Another piece of logic was inserted to allow input of character
values to integer and real variables., The character values are found by
gearching for a single quote, calling subroutine CHRVAL to determine
the position of the second single quote, and then converting this charac-
ter value to a unique integer (or real) value using subroutine CCI (cor
CCR), respectively. The unique integer and real values must be preset
in the routine calling subroutine PARSER, as well as setting up the ar-
rays needed by the two routines, CCI and CCR (see Section 4,2), After
conversion to unique integer (or real) values, they are then stored in

the array IC as described earlier.

28

As discussed in Section 4,3.1, if an asterisk is present after a
number has been specified, then the upcoming input value will be re=-
peated in the array IC the number of times specified by the given num-
ber,

The search is terminated and control is returned to the parser as

described in Section 4.3.1.
4,3.3 CHRVAL

Subroutine CHRVAL finds a character value in the character string
STRING by returning the position of the second single quote in STRING.

The first single quote is found prior to calling this routine, and
the position is passed into CHRVAL through the variable I, The second
single quote is searched for in STRING, and ite position is stored in
the variable IQ2. If no second quote is found, IQ2 will have a value of
zero (0). The character value is then checked for embedded blanks
between the single quotes, and, finally, the position of the second sin-

gle quote is returned to the calling routine in the variable IQ2,
4,3.4 CONVER
Subroutine CONVER converts a character representation of an integer

or real number to an actual real number (excluding exponential represen-

tation of a real number).

29

The character representation comes from the calling routine in the
character string TEXT, TEXT is first checked to determine if a minus
(=) or a plus (+) sign is present. If a minus sign is found then the
variable SIG is given the value of -1, while if a plus sign is found SIG
will have a value of 1, The beginning (NSTR) of the string TEXT is then
set to one plus the bresent point, If a decimal point is Ffound, the
position of the decimal point is returned in the variable NDEC,

Each character in TEXT is converted to a real number by subtracting
the assigned value of the ANSI representation of zero (0) from the as-
signed value of the ANSI representation of each character in TEXT. All
the numbers are then added to obtain the value stored in the variable
VAR, The result in VAR is a real number which can always be converted

to an integer when necessary in the calling routine,
4,3.5 CCI, CCR

Subroutines CCI and CCR convert character values passed in the
character string TEXT into unique integer and real values, respectively,
These unique values must have been specified in the routine calling sub-
routine PARSER and passed through the arrays IDAT and RDAT. The array
CDATA contains the list of character values to be specified during input

for integer and real variables,

30

TEXT is first checked against the list in CDATA to ensure that the
character value within TEXT is allowed. Then the position of the char-
acter value within the array CDATA is checked to ensure that the correct
unique number is stored in the variable IVAR (VAR in subroutine CCR).

IVAR is then passed to the calling routine.
4,3.6 ELEMNT

Subroutine ELEMNT converts a character representation of a number
within a set of parenthesis to an integer number indicating the position
in the array specified during input.

The character string TEXT contains the input variable (along with
the parentheses and number) in character representation. The positions
of the left and right parentheses (NL and NR, respectively) within TEXT
are determined. Then, between the parentheses, the character represen-
tation for the number is stored in the character string NUM. NUM is
then passed into the routine CONVER for conversion to an integer value
indicating which element in the array. The value is then returned in

the variable IVAR,
4,3.7 ILEN, ISIZ

Function ILEN determines the actual number of characters in the
character string TEXT.
Function ISIZ counts between the two numbers N1, N2. The sum total

is returned in ISIZ.

31

Chapter 5

Results
5.1 Applications

Three generic configurations were used to demonstrate Program EA-
GLE's capabilities on an IRIS 40/TOGT computer graphics workstation. The
first of the configurations is an elliptic cross-section missile7’!6’17.
The second is an ogive-cylinder-ogive with fins7’18. And the third is
an elliptic airframe with horizontal and vertical control surfacesS'Tz.

Each configuration was generated interactively with no other users
on the system. Also, each configuration generated used the option in
the EAGLE code to execute as if it were executing on a Cray X-MP com-
puter system with solid state desk device (SSDh). In other words, files
which are assigned to SSD on a Cray X-MP with SSD are now used as regu-
lar files. Therefore, CPU times stated may consist of up to 80% 1/0

time and not actual compufation. This statement is made based on simi-

lar runs using SSE on the Cray X-MP computer system19.
5.1.1 Elliptic Missile

This configuration has an elliptic - 3:1 - cross-section throughout

the body described by a parabolic curve from the nose to the aft end of

32

the hody. Extending from the end is an attached sting. Figure 1 shows
the body of this configuration.

A C-type system is used to discretiize the domain on and around the
body. This field grid is described by two (2) blocks (or grids), each
block containing one-half of the configuration. FBach block has the di-
mensions of 65x18x31 points - 65 points in the axial direction, 18
points in the radial direction and 31 points in the circumferential di-
rection -~ for a total of 72540 points (36270 points per block).

Figures 2a through 3b display side and front views of the algebraic
grid. Figures #a and 4b show a perspective view of the entire grid and
a closeup view of the grid near the body. The surface and field grids
shown in these figures are the same as those presented in Reference 7.
This indicates the grids generated on an IRIS U4D/TOGT computer system or
similar systems are consistent with previocusly documented work.

The generation of the algebraic grid took 863.81 CPU sec (30 min
wall clock time). This breaks down to 1.2 x 1072 cPU gec/point. An el-
liptie grid with five iterations was also generated to obtain an idea of
the time it takes to generate an elliptic grid. The generation of the
elliptic grid took more than twice as long as the generation of the al-
gebraic grid. The times are 2225.01 CPU zece or(68 minutes wall clock),
which comes to 3.75 x 1073 CcPU gec/iteration/point. No elliptic grids
are shown since they demonstrate little or no difference from the alge-

braic grids shown in Figures 2a through i4b.

33

5.1.2 Ogive =~ Cylinder - Ogive with Fins

This configuration consists of an ogival nose, a cylindrical mid-
gsection and an ogival boattail with fins. Once again, a sting extends
from the aft end of the body. Figure 5 displays this geometry.

This configuration also uses a C-type system for the field grid
around the body. It consist of four (4) blocks. Each block has a total
of 33600 (140x24x10) points, for a sum total of 134400 pointe for the
entire field grid. Figures 6a through 7b display the side and front
views. of the algebraic grid. Figure 8 shows a perspective view of the
grid of one of the blocks near the body. Once again, the grids gener-
ated on the IRIS 4D/T70GT are comparable to those generated on Cray com-
puter systems as documented in References 7 and 18.

The generation of the algebraic and elliptic grids (5 iterations)
took 2022.25 CPU secs (1.5x10 2 CPU sec/pt) and 4510,98 CPU sec
(3.70x‘|0-"3 CPU sec/iteration/pt), respectively. The wall clock time for
the generation of the algebraic grid was 75 minutes., No wall clock time
. was observed for the generation of the elliptic grid, although, it can
be estimated at approximately 180 minutes. WNotice that the times speci-
fied in CPU seconds per peoint for the algebraic grid and CPU seconds per
iteration per point for the elliptic grid for the first configuration as
compared to this configuration are gimilar although not the same. The
difference can be attributed te the larger number of blocks increasing

the I/0 time.

34

5.1.3 Elliptic Airframe with Control Surfaces

This last configuration is of an advanced airframe consisting of an
elliptical cross=section for the upper surface of the body, a flat bot-
tom surface, and vertical and horizontal control surfaces., Only half of
this airframe was gridded, as seen in Figure 9.

The field grid surrounding this airframe is a H-type system con-
sisting of five (5) blocks, for a total of 111040 points for only half
of the airframe and the surrounding domain., The dimensions for each

block are as follows:

Block 1 - 70x24x10 (16800) points
Block 2 - 70x24x22 (36900) points
Block 3 - 70x16x31 (34720) points
Block 4 - 20x24x31 (14880) points
Block 5 - 20x16x24 (7680) points

Block 1 encompasses part of the upper surface of the body up to and
including one gide of the vertical tail. Block 2 has the rest of the
upper surface of the body from the other side of the vertical tail to
the upper surfaces of the horizontal control surfaces. Block 3 contains
all of the bottom surface, including the flat sides of the horizontal
control surfaces, The last two blocks - blocke 4 and 5 - encompass the
entire domain in front of the airframe. Figures 10a through 13b show

front, side and top views of this configuration, and Figures 13a and 13D

35

show a perspective view of the entire domain and a closeup view of the
grid near the body., These grids are also comparable to the grids docu-
mented in References 8 and 12.

The aligebraic grid took 3038.7 CPU secs to generate, while the el-
liptic grid (5 iterations) took 6500 CPU secs. With respect to CPU
time, the algebraic grid took 2.7llx10"'2 CPU sec/pt and the elliptic grid

took 3.8x10—'3 CPU secs/iteration/pt.
5.2 Porting

After verifying that Program EAGLE worked correctly on the IRIS
4D/TOGT computer graphics system, the code was placed on a SUN 4/280
computer system to determine if the code is portable across different
computer systems.

After placement of the code on the SUN 4/280 computer system, the
FORTRANTT version of the EAGLE code compiled without errors and without
having to make any modifications or changes to the code., This version
of Program EAGLE executed correctly for all three configurations
described earlier. The CPU times obtained to generate these three
configurations on the SUN 4/280 computer system are comparable to those

times obtained on the IRIS U4D/70GT.

36

Chapter 6

Conclusions

The results of this effort show that the FORTRANTT version of the
EAGLE code with its own NAMELIST input emulator works as well as the
version written for the Cray systems. The three configurations used to
test the FORTRAN7TT version of the EAGLE code have demonstrated the capa-
bilities of the code, as well as obtaining results consistent with pre-~
vious work documented in References 7 through 9, 12, and 18. Th;s
version of the EAGLE code can then be used on other systems having the
FORTRANTT compiler with little or no modifications to the code as demon-
strated on the SUN 4/280 computer system. As power and speed of com~
puter systems increase, the more plausible it becomes to execute Program
EAGLE in an interactive environment, especially when tied to a graphics
program allowing the user to “see" the work being achieved.

As with any other effort, this effort is not the one to end all
efforts, But it is a beginning of a powerful tool for the computational
fluid dynamics community. Further efforts are needed to give the user
greater control and flexibility of the execution of the code and allow

visualization by the user of the problem at hand.

10.

1.

12,

References

Priolo, F. J., Wardlaw, A, B., Baltakis, F, P., and Solomon, J.
M., "Inviscid Multiple Zone Strategy Applied to Complicated Su~
personic Tactical Missile Configurations," AIAA-85-1813, Aug
1985, ’

Kutler, P,.,, "A Perspective of Thecoretical and Applied Computa-
ticnal Fluid Dynamics,™ AIAA-83-0037, Jan 1983.

Mounts, J. S., Martinez, A,, and Thompson, J. F., "An Analysis
of Elliptic Grid Generation Techniques Using "An:Implicit Euler
Solver," AILAA-86-1766, Jun 1986.

Thompson, J. F., "A Survey of Grid Generation Techniques in Com-
putational Fluid Dynamics," AIAA-83-0447, Jan 1983,

Thompson, J. F., "A Survey of Composite Grid Generation for Gen-
eral Three-Dimensional Regions," Numerical Methods for Engine
Airframe Integration, S.N.B. Murthy and G. C. Paynton (ed.},

AIAA, 1986.

Thompson, J. F., Warsi, Z.U.A., and Mastin, C. W., Numerical
Grid Generation: Foundations and Applications,” North-Holland,

1985.

Martinez, A., Mounts, J. S., and Thompson, J. F., "Program EAGLE
= Numerical Grid Generation System User's Manual," AFATL-TR-
87-15, Mar 1987.

Martinez, A., Chae, Y. S., and Thompson, J. F., "Program EAGLE -
Numerical Grid Generation as Applied to Advanced Airframe Con-
figurations," AIAA-87-2294, Aug 1987.

Lijewski, L. E., Cipolla, J., Thompson, J. F., and Gatlin, B.,
"Program EAGLE - Users Manual®, AFATL-TR=88-117; Vols, I, II,
III, Cet 1988.

Thompson, J. F., "Composite Grid Generation Code for General 3-D
Regions -~ the EAGLE code", AIAA Journal, Vol, 26, No. 3, pg 271,
March 1988. ’

Chae, Yeon Seok, "The Construction of Composite Grids for Gen-
eral Three~Dimensional Regions", Ph.D, Dissertation, Missis-
sippi State University, Aug 1987.

Jones, Gerald A., "Surface Grid Generation for Composite Block

Gride," Ph.D, Dissertation, Missisgippi State University, May
1988.

38

13.
14,
15.
16.

17.

18.

19.

American National Standards Institute, American National Stan-
dard FORTRAN, X3.9 - 1978 (FORTRAN77). This standard is avail-
able from the "American National Standards Institute; 1430
Broadway, New York, N.Y. 10018, USA.

Balfour, D., and Marwick, D. H., Programming in Standard

FORTRANTT, North-Holland, 1985.-

Cray Research Inc., CFT77 Reference Manual, Publication number
SR-0018, Cray Research Inc., 2520 Pilot Knob Rd, Suite 310,
Mendota Heights, MN 55120, Sept 1986.

Shere.:a, D. E., Amidon, P. F,, Dahlem, V., and Brown-Edwards,
E., !'Pressure Test of Three Elliptical Missile Body Configura-
tions at Mach Numbers 1.5 to 5.0", AFWAL-TM-84-236-FIMG, Dec
1984, e g

Remotigue, M. G., and Mounts, J. S., "A Semi-Empirical Examina-
tion of the Aerodynamies of Elliptic Missile Configurations Us-
ing Missile DATCOM", AFATL-TR-85-100, Apr 1986.

Cottrel, C. J., and Lijewski, L, E., "A Study of Finned Multi-
body Aerodynamic Interference- at Transonic Mach Numbers",
AIAA-87~2480, Aug 1987.

Thompson, J. F., Private Communication, Mississippi State
University, MS, 1988.

39

FIGURES

40

Figure 1 - Elliptic missile surface grid

41

PTI3 PTOTI STISSTW OTIATTI® JO MOTA IPIS - BZ 9Ind1g

\\\\\\\ \\\\\\\\\\ I

:\\\\\\\

ALaRen

N
NN

RN
I ////////////////

42

RRRRNASRAN
\\\\\\&\\x
\3\\%\\\\&\
NN

3 \X\\

s
s

W

. \}"’(\l% /\' /'/ //

\\\&\;\%ﬁ q/’g/éy 4///(/j"/,§%/-<
Nl {4 7 7

. _

NN

A

[]
t
~ -
= _“:t::EENfE (7
—] vy o = ———
T e]
e e NN]
}
130 N |
-d-ﬂ-’--"#-]#‘p‘—- . ;N“H
M sl _: \M i
—“/ /-‘-"‘ h\N'\ \
/" \ 3
"_/ // [’ o \
- / | \ |
// | \
7 /// X \'\\ \
-1 ,//] 1 \\\ \

43

Figure 2b -~ Close-up side view of elliptic missile field grid

Figure 3b - Close~up front view of elliptic missile field grid

45

PTI8 PTOTF TISSTW OTIAITT® TTBISAO JO MITA dAT3IDadsiag — ey 9andIj

46

= ALBENN
/? AL \'\'."‘-\"‘-\\\WY N,
/ // /\7/\r \\ \ \‘..\\\\\ 2 §\ \\\ xx C

‘l' ,' f !' !I' / l{.-:,,!,‘_r' -’['I' ,.’. _f i :’),,-

(ii7iitii friss
/ '/ ’;'{/ ’_/ ',/_ /'._ / // / /:/
{! ‘D } 1 s -

Iy .".""" '. v / /”
i1 /f' (i ’/'L;f//:'/}»f/,

! ! ,“’, / .';t'f’ LI S e
Wil 77

{ : 4 7

} / / il 77 % %”
il »,;';Z’V/,’/% s
.

)
|' ¥4 ',""_.'I_. R 7 /(
w7 7%,
‘_-’/!w,l/',. p :
7 /
Il ! 7 1//
i A
’;lif,;,lll’lé%/ﬁ/// r/

\ |

t
)

] P AL 53 NN Y \
! \ \\ K/({\\\ \\\"\\\\\\\\\ \\\ \\\\\\ NN

47

Figure 4b -~ Close—up perspective view of elliptic missile field grid

Figure 5 - Ogive~Cylinder-Ogive with fins surface grid

48

PTA8 PTSTF SUTF YITM IAT3Q~I9PUTTAD-IAT3(Q JO MITA BPTS —~ B9 AN3TY

L

S

_

e

=

/,.// / ./ ,/. /

/«»Hp . ,
2
N
A

,
N
BN
)
X

D
/H
RN

49

e b g o e e P e s i e

PTa8 PI9IF SUTLF YITM 2AT30-a9purTLD-oaT30 Jo MaTA 9prs dn-9soT) - q9 2an31y

" AL
AT

'/ \ 5

21

Rer
f Cmis 2
3 2
m%“

4 & ity %

4 A 7

F
SN

o8
SRR

ol
A
&

o2y

.«\\\w\
G
G4
14y “
CHLLT
e 2R

e
7 7%,

50

1Al

RTINS Jw

T RN N
NN
g
W
AN NN
TLAN

< 7
/Z, ~ L
SO L
—{ =

field grid

ew of Ogive-Cylinder-Ogive with fins

7a ~ Front vi

Figure

51

Figure 7b - Close-up front view of Ogive-Cylinder-Ogive with fins field grid

52

'\\:\ \.) D
. N,
l\%
QX\\\\\
N :5:\: N
., \ N\
\\\\\\\ N, N\,
5\;‘:?\\:\\\‘ N \\\\\,\

NN
\Q \\\\

\ \‘i\ \ Y

NN '\ Y
}\\\

X \\.

\\\\\\\, NN

\
AY
N\

\
\

i
1l

UWHTIRTIT
N

WL
N

53

Figure 8 - Close-up perspective view of Ogive-Cylinder-Ogive with fins field grid

W57
.. 3 q%l,' -
T eE T A 320 =
/Mwwyz‘%gflg;’l c—
Wenssciiioi 0
LA %’ LT =
ALl

Ry ,@{W//I,'IW z /

ot /

Figure 9 - Elliptic airframe with control surfaces surface grid

54

Figure 10a - Front view of elliptic airframe field grid

55

\

=3\

Figure 10b - Close~up front view of elliptic airframe tield grid

56

T

pPTa3 pIaT3 sweiate OTIATITTD JO MITA 9pTS — BI] =2andtg

57

PEA8 prory sweagare OTIdITT® JO MOTA opfs dn-asof) - qI] 2andIjg

< SSEE et ==
- = ISi=i=8= R

= == L e e S e

AT : : 7] REREE ey , \

L

58

PTa3 pToTJ suweiajarte 9T13dTTT® Jo mara dog - ezl 2an31g

59

LT

.H
&

w u. b

mv. 'H

|
. .
P .
~ S ——t]]
!If;‘l.’.,lfl //,/l
WL
1H- | , ///’/
_ 1 _ ’.I!l{’![//
- -+ ///
: : Illtlll/rl ///
Y g [N
o2 X [W /4//
- = - ~ ///
—' : r/l ///
= el ~
N YU (U = :
=\ Ns
A = S \ / ./l
.s.uh.

60

I {77
i } n s
, e
i1/ Al Ii 147 LA R
i , /1 w72
AN WAV AR
[mvAvimar VOV i
7 I LA T LTV,
. - ye T | oA
/ 2 L -] ;
7 I‘ ‘/ 1- - L 0 1Y AWE W]
P rd -
1 1 ' :
: AP B \ |-::— .._-—J SN N”?\
—’.-_‘-____‘_- " || f \
1] ~T] ' | T ! i o
————'—"‘-"—-’-’—‘.‘ J ’“‘__J,_.L-f S . o
i 1 . "‘I-\\
T ! T
L ! EREECS i
_! IRRES \.\\
L | T
] » B ey ~L
.
| LA L
L

Figure 13a -~ Perspective view of elliptic airframe overall field grid

61

Loy ,,-,l,,
7 7, 2 "/‘n:
X i
R0 i 7T
4 9
YA / 6/;
% / 25
| // ,/:/- /
4 7
1/
7 7
NO 77 /
v =
"'5?0."”"’"'“"“2"' -
’é&%”:‘?’l"” % F-_,..—
‘Z,ﬁ;’g?g,’, ,L‘ ==
';’””M'Q / rl
ik i A A
2 0702 00, i £
7 Vi g
L g ey yi
A A
¢ % //, % fl/ /Iz Z // y
e e e
YL, /,/ /I/A;,ﬂ-—_—:!’-;:_?——'
i e
L e————x
A et ep————
Vs, ;// =5 L7 7 7
LAY & L7 -
7 —'r;zy,‘g,”///’//./// /7// 7 7
o
SV d'{,////',/j/&;’/ /% ‘/ /

o ﬂ%//ﬁW ////é'

-

Figure 13b - Close-up perspective view of elliptic airframe overall field grid

62

Appendix A

SAMPLE PROGRAM SET-UP LISTING

L& <3 (9]

B9

[

c
c

c

)

CHARACTER®XS NAMLST » NAMLIS » GHATA

CHARACTERX144 STRING

CHARACTER¥&4 ICHR

INTEGER CPOS » IFQS » RFOS » FPRMFT

INTEGER UP » ELGWN » RSTHARY

INTEGER FLINFE » FINL » PITEXT » FIRCHO » PLS »
FIZQUAL » FNUM

FARAMETER(NCHAR = 31 » NINTG = 27 » NRRALS = 0

FARAMETEZR(NDVAL = 34y NIVAL = ¥NVALMA+41 » NRVAL

FARAHETER(NIDAT = 3 » NROAT = 7))

FARAMETER{ NVAR = NCHAR + NINTG + NREALS)

FARAMFTERC NHAT = NIDAT + NRDAT)

FARAMETER(IIF1 = NVALMX + 4% » ICPL =2)

y PNl

= JILHRPS

y FNJ

+ 3

COOQOOOOQ‘O000"0000'0"000‘0.0000000000‘000000‘00000000000000‘000‘0

c

c

PARAMETER

(RNONE I+ 402824E+36 INONE =

2147483647

}

COOOOCOOOO‘O‘OO'.0‘000000040000000000000‘4000000000'0000000000‘00000

c

4

9]

(9]

(s e Xe] (]

[¢ X3 X¥]
(]

DIMENSION M

N

DIMENSTON I

DIMENSTON C

DIMENSION €

THIS 8§
EQUIVALFNCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
EQUTIVALENCE
EQUIVALENCF
EQUIVALENCE
EQUIVALENCE
EQUIVALENCFE

THE NFX

EQUIVALENCF
EQUIVALENCR

AMLIS(NVAR) » NDIMIC NVAR)

NRIMZ(NVAR)

4

AMLST(2)

CHR{ NCVAL) » INTGR(NYUAL) » REALSC NRVAL)
BATAC NRAT) » TDATC NIDAT) » RIATC NRDAT)
POS(NCHAR) » IPQSC NINTG) » RFOS. NREALS

ET FOR THF CHARACTER VARIARLES
(ICHRC 1) o ITEM) » (ICHRC 2)
(ICHRC 3) » " INTERP) » (ICHRC 4)
(ICHR(S) » FUN) » (ICHRC 6)
¢ ICHRC 9> s REWINT) » (ICHR(10)
{ ICHR(11) » RESTART) » (ICHRCI2)
(ICHR(13) s SMOCON) s (ICHR(14)
¢ ICHR(1S) » WEIGHT) » (ICHR(16)
(ICHR(17) OUTER) » ¢ TLHARCAS)
(ICHR(19) + DCROSS) » (ICHR(20)
¢ ICHR(23) » CONGUT) » ¢ TCHR(Z23)
¢ ICHR(2%) » TRIARM) » (ICHR(26)
(ICHR(27) » KSTORE) » (ICHR(28)
(ICHR(29) » MOAZ) » ¢ ICHR(30)
(ICHR(31) » PART) » (IEHR(32)
¢ ICHR(Z3) » THTORT 3 » & ICHR(3IS)
{ ICHR(3S) « CONTHR)
T SET 1S FOR THE INTEGER VARIABLES.

{ INTGRC 1) START s+ FPOTNT)

¢ INTGRC 43 » 1START » IPOINT)

64

R T R I I I

CLASS
FROTYF
BLEND
CONTYF
CHECK

AlL

MATH
UFIRST

PROFQR »

CONTIN

NEW

FORM
IFRINT
RI.KERR
FTLMNAHM

L W Y R ™ R W

)
FROF)
)

e W N N

OO0 () OO G

L)

o oo

SO0

c

EAYIVALENGT
EQUIVALENCE
EQUIVALENCF
EQUIVALENDE
EQUIVAl ENCY
LRUIVALENTE
EQUTVALENCE
EQUITVALENCE
EQUIVALENCE
ZAUIVALENGR
EQUIVALENCE
ERLTVALENGE
ZQUIVALENCE

THE N
EQUIVALENCE
EQUIVALENCE
EQUIVALENCE
THIS SET OF

EQUIVALENCE
EQUTVALENCE

¢ INTGRC 7) ENDI 7+ { TNTOGR{30) » iran 3
¢ INTGR(13) » BLACK » R » RLOC)
(IMTGR(14) » TIRLOCK » IR)
¢ INTGR(AG) » ORUER » SMORIR » 8§)
{ INTGR(18) » RORRER » SHOCOH » RS)
¢ INTGR(21) » QOFBINT) » (INTGR(Z4) » TTMAX)
{ INTGR{2R) » FILE) » (INTGR(ZS) » CONUPT)
¢ INTGR(272 » VALQUTIVALLE) + (INTGR(28) » LOCAT 2
(TNTGR(31) + SEGMENT) » (INTGR(3Z; » FOINTS)
¢ INTGR(33) » DNIRRIT J » (INTHGR(3II) NEEX)
¢ INTGR(3S) s FRONIR » FRGJ)
(TNTBR(Z8) o £i7z)
¢ TNTGR{41) » TERHS) » (INTGR(IIFL} »ITERHS !}
FXAT GFT I8 FOR THE AFal VARIA&RLZE.
¢ REALSC 1) » ACCFAR) » (REALSC 2) TGL)
(REALSC 32 » GONFAC) » (RFALSC 4) » SFAVAL)
¢ REALSC &) » VALURS)
EQUIVALENCE STATEMENTS MAINLY USED WHEN CHARATTER
VALLUES ARE INFUYS TO INTEGER OR REAL VARTASLES.
¢ IDATCL) o UP) » ¢ IDAT(2) o ROWN)
{ TOAT(3) » RSTART)
¢ RDATCL) » QFTIMUM) » (RIOAT(2) » FEXTRAF)

EQUIVALENCE

-t 00 8 it St T o ot o St O e e B 2 e €0 e W e - 6 @8 W e wise RO

THIS SFT OF STATEMFNTS ARE FOR QUANTITIES

20 BV 80 WO £C RO &e

Qs 8% @ &) 00 WS ao

A et e e e ke e Re 4b 40 40 4T 46 e

GF TYPF CHARACTFR

DATA NANLST/ /GINFUT’ » 7GOUTPUT’ /
BATA (NAMLISCI)}»T=1,NCHAR)/ ’ITEM’» ‘CLASS’ » ‘INTERF’
'"PROTYP' » ‘FUN’ PRILENTY” » /REWIND’ »
‘CONTYF’ » ‘RESTART’ » ‘CHECK’” » ‘SHOCON’ »
‘AlLLY s 'UEIGHT’ "MATH’ o ‘BUTER’ »
‘OFIRST’ » ‘DCROSS’ » ‘PROFOR’ » /CONCUT”
CONTIN' » ‘TRIAD’ ‘NEW’ s 'KSTORE’ »
"FORM’ » ‘HODE’ » ‘TFRINT’ » ‘FART’
'RILKERR’ s *INTORT’ » ‘FILNAM’ » ‘CONTHR’ /
THIS SET 0OF STATEFMENTS ARE FOR QUANTITIES OF TYFE INTEGER
DATA (NAMLIS(I) s I=NCHAR+1»NINTGHNCHAR) /
‘START’ s+ ‘T1START’ » TENR’ ‘IEND’ »
'BL.OCK’ » /IRLOCK‘ » ‘ORBERY » 'SHMODIR’ »
‘RORNER’ 5 ’SMOCOM’ ‘POINT’ » /IFQINT’
‘OFOINTY » ‘ITHAX » 'FILE” » ‘CONUFRT’
‘VALAUT » ‘LACAT’ 4 ’SEGBMENT’ » ‘FOINTS’ o
‘NIRFCT? 'NDEX’ » ‘PRONIR’ SIZE’
‘TERMS’ » “TTERMS’ » TVALLR . /
THI3 SEFT OF TSTATEMENTS ARE FOR RUANTITIEZES GF TYFE REAL

DATA (NAMLIS{T) » I=NINTG+HNCHARH] yHCHARENINTGTNREALS) /

3
2

FACCRAR
'YALUES’ /

‘TOLY » ‘CONFACY

y SFAVALY

C THIS FIRST SFT OF UATA UALUES FOR THE ARRAY NIVM I8 FOR CHARACTER

65

- o o a0 o= o8 -

[» VARIARLES. ANY ARBNITIONS OF CHARACTER VARIABLES SHOULD COME AT THE
[END, IN THF EVENT AN ARRAY 0OF VARTABRLE SIZE I8 TO RF ARNEDN MAKE
[SURE THOSE ARRAY GSIZES ARE ALWAYS AT THE ENG.
C
C THE SECOND SET IS FOR INTEGERS. NITE THAT THE VARIARLE NiTMENSIONED
c ARRAY SIZES ARE AT THE ENR UF THE INTRGER I.IST.
~
C THE LAST GRCUF OF VALUFS ARE FOR REAL VARIABLES. AGATIN: NOTE THAT
[THE VARIARLE NIMENSIONER ARRAY ST7ES ARE AT THE ENR OF THE REAL
C LIST.
[
DATA NDTM1/ 19 1y 1 1y 1y L9 X9 s %2 3y 1y 39 15 Xy 15 12 1y i
3 Yr s ts dr A ks 1 Ls 1y L s 15 1
¢
& 1y 1y 15 s 3y 15 Ly 2y 3s 3y iy 39 3y 1y 12 1>
& s 15 17 1s Xy 17 1y 35 15 1 1,
c
3 1y 3> 12 1, 1 7/
c
DATA NOIM2/ 19 39 3s 1y 13 39 1y 15 1y 1y 1s 1y %s 1y 33 13 1» 3
% e Ls s 22 19 19 % 15 1y 1s %9 1y ICFLs
c
% 3r 39 3» 39 L1y L1y 3y 32 3y 32 3» I 1y L 1y Ly
% 17 35 1y 1 1y 15 39 3r NVALIIXsNVAILMXs 1,
C
& 1y 39 1y 1sNIMP3I/
[
C THESE ARRAYS USER BY THE FARSER FOR POINTING TO A MEMORY LOCATION.
c
DATA CFOS/ 1r 23 39 4y S» b9 9910913801293 3»14915016217918919220,
3 239249251262 27928529930s31,32,33234935/
c
DATA IPQOS/ 15 4y 75103139149 15915:189189 1y 492213249251 26927928
3 31932:332,34935238941,11FP1,27/
[»
DATA RPQS/ 1y 29 3» 4y S/
c
C".Q"..OO0.0QOO"....'0.0‘0.0...000‘.000‘0‘000.“00‘0'0‘..00.0.0“0‘
[
c THESE STATEMENTS ARE ANNITIONS, 070988 <dus AM>
c
DATA UP/ 2147483644 / » DOUN/ 2147483445 /
c
DATA RSTART/ 214748326446 7/
[»
DATA OFTIMUM/2147483647.1/ + EXTRAP/2147483447 .1/
c
DATA CDATAZ ‘UP’ » ‘DBOWN’ » ‘RESTART’ » ‘OFTIMUM’ » ‘EXTRAF’ /
[
CQ'0"‘0...‘0"“00.0.‘..0000“000‘.0.0.‘00‘..000.l.‘...“b‘...."‘."bl
[»
OATA FLINES/ § 7/ » PIECHO/Z O / » PINL/Z L / » FLSZ A / s FLT/Z L / »
3 FNI.LZ 1/ ¢ FNJ/ L /
c

CX**K*****KK**#*#**K*****#*k*#**fﬂ***K*ﬂ*##l*****t#ﬂ***KX******Y********
c

-
.
[}
.
[3
.
.
’

o
CHERLERRALLHELRCEIRELEE RFAN NANFL ST 33458000 RRBRBEP2E2032333323303003
c
C THE FOLLOWING LINES REFLACE THE LINF °*READ INFUT*. 1HESF LINES ColL
C THE NAHELIST INFUT ENULATOR. NOTE THAT THE ROUTIHE "FRGIHFT®
£ SETS UP & PRONPT FOR THE INTFRGCTIVE LSRR,
-

FRMAFT = PRUFT + ¢

HOS = ¢

IFC I2ATCH .EQ. 0 J CGiLL FROMPT(FRUFT)
C NOW RFAR TH THE INPUT STRING ANR DRTERIING IF 778 700 LOWG.
-

127 CGRTINUE

¢

CALL RDSTRG(STRING » LET » RFADFL s NSTRNG r ISTRNG : ISTAT)
c

IF({ ISTAT .FQ. 1) GO T 100
c
C FPASS THE CHARATER STRING *STRING® 70 THE PARSER AN FARSE THE 1KFINS.
c

CALL FARSER(STRINGHAHNLST (1) NAMLISNDIH1sNOIZs XCHR: IRTGR Y

2 REALS,CRATAs IDAT,RDAT » CFRS » IFO5 « RPOS 5 NVAR

3 NCHAR » NINTG » NREALS » NCVAL s NIVAL » HRVAL »

3 NDAT » NIRAT » NRRAT » NRS », FLINES s PINL »

2 PITEXT » FIECHG , FLE » FLT : FNL » FNJ » FISQUAL »

3 FNUN 5 ISTAT)
€

IF (ISTAT Q. 1) 60 TO 100
[o4
CRRKKKKKKKKKKKKRKKKKAKIKK KKK KK KLLLLKKKKRAXK KKK ELLLE TR E LR ERLHR KKK
c
c

IF(NDS JEQ. @) GO TO 199

67

Appendix B

GENERALIZED PARSER/NAMELIST INPUT EMULATOR LISTING

68

[

997

SURROUTINE RDSTRG(STRING » LCT » IREAR »
CHARACTERX(X) STRING
IF(IREAD .8Q. 1) THEN
REAR(2,999) STRING
ELSE
REANC 5,999) STRING
ENRIF
LCT = ILEN(STRING » ISTRNG)
IFC LCT +GT.» NSTRNG) THEN
LST = LCT ~ NSTRNG
FRINT &y’ ERROR ~ TOQ HaNY CHARACTRRS
FRINT X, STRING(1:LCT)
FRINT %+ SHORTEN LINE BY AFPROXIMATLY
PRINT ¥+’ '/
ISTAT = 1
RETHRN
ENDIF
FORMAT(A)
RETURN
END

69

NSTRNG »

IN THIS LINE /

‘9L.8T7s 7 CHARA

~

1

ISTRNG

~
b

4

]

-
fr)

IsSTAT)

.
3

[}

SURRQUTINE PARSER(STRING s NAMLST» NAML IS»NNTM1 s NDIM2»XICHR » INTGRy

&3 £ o &0 0o

KEALSsGDATA ¢ TNAT » RDAT » CROS » TPOS » RPOS»
NVAR s NCHAR » NINTG » NREALS » NGCUAL 9 NTVAL
NRVAL s NDAT s NINAT s NRDAT 5 NRBS » L o INL »
ITEXT » JEGCHD » 1S » LT » NL » N IEQUAL »
NUM » ISTAT)

Ct*******x****************#**X*#Kk***x*#K#K*****#*3**************13****#

onnnnnnnnnooononnnnnonnonnnonnnonnnncnonoooo

OOOGOO000

THESE STATEHENTS USED FOR FARSING. 070988 <dus Al

THE FOLLOWING I

STRING =

NHHLST -

NAML IS -~

ICHR -

INTGR -

REALS -

NDIML & NDIM2 -

NCHAR -
NINTG -

NRFALS -~

§ & NESCRIPTION OF THE VARIARLES USER FOR FARSING:

INFUT CARACTER LINE;PASSER TO THE FARSER FOR
FARSTNG.

CONTATNS THE MAME OF THF NAMELIST.

CHARACTER ARRAY DIMENSIONED TQ THE NUMRER OF
VARIABLES IN THE NAMELIST (NVAR) ANTD WHICH
CONTAINS THE LIST OF INPUT ITEMS IN NAWMELIST.

THIS ARRAY IS DRGANIZER WITH INFUT ITEMS 0F TYFE
CHARAGTER FIRST » INTEGER SECOND » AND REALS L.AST,

CHARACTER ARRAY WHICH HOLDS THE VALUES FOR THE
INPUT ITEMS OF TYPE CHARACTER., THIS ARRAY 1S THEN
EQUIVALENGCED TO THE AFPROPRIATE VARTARLES. THIS
ARRAY 1S BIMENSINNEU TO THE NUMRER OF CHARACTER
VALUES ¢ NCVAL)

INTEGER ARRAY WHICH HOLRS INTEGER VALUES FOR THE
INPUT ITEHS OF TYFE INTEGER. THIS ARRAY 18 THEN
EQUIVALENCER TO THE FRUPER INTEGER VARTABLES.
INTGR XS DIMENSIONED TO THE NUMRER OF INTEGER
VALUES (NIVAL) IN NANLIS,

REAL ARRAY WHICH HOLDS REAL VALUES FOR THE INFUT
1TEHNS OF TYPE REAL. IT THEN 1S EQUIVALENCER TH THE
APPROFRIATE VARIARLES. THE ARRAY REAL IS DIMENSIONED
TO THE NUNRER OF REAL VALUES ¢ NRVAL) IN NANLIS,

ARRAYS CONTATNING THE LOWER & UPPER ROUNDS
RESFECTIVELYs OF EACH OF THE VARIABLES IN NAMLIS IN
THE ORDER OF CHARAGTER FIRST» INTEGER SEGOND » AND
REAL AS LAST. NDINM1 AND NOIM?2 ARE DINENSIONED RY THE
THE TOTAL NUMRER OF VARIABLES IN NAMELIST NVAR).
NUMRER OF CHARACTER VARIABLES

NUMBER OF INTEGER VARIABLES

NUMBER OF RFAL VARTARLES

»>»5>NOTE: NVAR = NCHAR + NINTG + NREALS<44LL44L

THE FOLLOWING ARRAYS ARE USED WHEN CHARACTER INFORMATION 18 PASBED
IN INTEGER OR REAL VARTARLES(IN THE INFUT) INSTEAT OF INTEGER
0f KEAL VALUES, THIS TS USEFUL IN THAT IT ALLOWS THE USFR SOME
FLEXIBILTTYs2.2,0 THE USER DOES NOT HAVE TO SUFFLY THE AFPFRO-
FRIATE VALUES ¢ INTEGER OR REAL) RUT CAN INFUT SAY ’‘FIRST’»
‘1LAST’s OR ’'SAME’{ DR WHATEVERs; AS NESCRIHBED kBY THE WSERS MANUAL -

70

'FRGBRAM EAGLE -~ USERS MANUAL VOLUME II* BY DR. JOGF F. THOMPSON
MI3S. STATE UNIV » DEFT OF AEROSPACE ENGINEERING » MS).

CRATA - CHARACTER ARRAY CONTAINING THE NAMES OF CONSTANTS.
THIS ARRAY (8 NIIIENSIONER TO THE NUMBER OF
INTEGER AND REAL CONSTANTS! NRAT).

IDAT - INTEGER ARRAY COGNTAINING INTEGER CONSTANTS
INITIALTIZED RY THE MalIN FROGRAM. THE ARRAY IS
EQUIVALENCEDR TO THE APFROPRIATE VALURS., INAT IR
UGIMENSIONER BY THE NUMRER UF INTESER VALUES IN
‘COMMON/ CONST / v *(NIDART),

RDAT = REAL ARRAY CONTAINING TNTFSFR CONSTANTS THITIALIZFR
[N THE MAIN FROGRAM. THIS ARRAY 1S EQIIVALENCET 76
THE AFFROPRAITE VALUES AMD IS NIMENSIONED TO THE
NUMEER 0OF REAL VFLUES IN *COMMON/ CONSTY /7 ...°
(¢ NRRAT).

FReXEEINOTED = NDAT = NIBAT + NRDAT L0 {000 alal e 0

CPO0S - INTEGER ARRAY WHICH HGLDS THE ACTUAL. ARRAY POSTTIONS
OF AlLL THE NAMELIST INPUT VARIAERLES 0OF TYPE
CHARACTER. CPOS ACTS AS A FOINTER FOR THE PARSER.

IF0S - INTEGER ARRAY WHICH HOLDS THE At LAL ARRAY FOSITIONS
OF ALL THE NAMELIST INPUT VARIABLES OF TYFE INTEGER.,
IFGS ACTS AS A FOINTER FOR THE PARSER.

RPOS - JINTEGER ARRAY WHICH HOLDS THE ACTUARL ARRAY FOSITIONS
0F ALL THE NAMELIST INPUT VARIARLES OF TYFE REAL.
RFOS ACTS AS A FOINTER FOR THE PARSER.

OO0 O000GOOGOGOoO OO0 GO0 0

(M

C‘00006000000l.00‘0‘0000‘l0"0000‘000000000000000000000‘00000‘0000000000

c
c OTHER ADDITIONS?
€
c ISTAT - STATUS FLAG., *ISTAT = (' NG ERRORS#*ISTAT = 1°
c INNICATES AN ERROR. I7 WILL FPROMFT THE USER IN
c INTERACTIVE MODNE.QTHERWISE, EXECUTION WILI STOP,
€
CREEKAKICK KA KKK AR KKK KK KKK KKK KK KKK KKKA KKK KKK KKK RKEKKKIKKK KKK KKKKKK K
c
CURRKKK KK KKK KKK AKIKKKKAKAKK KKK KKK KK AR K IK KA KKK KA KK AKKEKKK KKK KKK
c
€
CHARACTERX (X) NAMLST » NAMLIS » CRHATA
CHARACTERX144 TEXT
CHARACTERX (%) STRING
CHARACTERX (%) TCHR
c
1NTEGER €CPOS » IFGS » RFOS » FOINTR
c

FARAMETER(NTEXT = 144)

JIMENSION TCHR(NCVAL) » INTGR(NIVAL) s REALS(NRVAL }
DIMENSION NAMLIS(NVAR) s NUIMLC NVAR) s NURIM2(NVAR)
LTIMENSION CDATAC NDAT) » JDATC NIDAT) » RDAT(NRDAT)
2. TNSTON CPOS(NCHAR) » TFOS(NINTG) s RPOS(NREALS)
c
CRXERACKKILK KKK EKRKK AN K KRR KKK KKK IR KKK HK KKK KKK KKK KCRKK

71

CHEKLIRIKIR KKK KKK KKIORLRK KK KK IR KKK KK KRR KKK KRR ACK KKK KKK KKK KKK KKK KK LK K
€
Ico
fce

ICh

ICHARS 79°
ICHARC 727)
IZHARC *A‘ 2
iCT IgHarRC 777)
ICQU = ICHARC 7’77)
ICoH = ICHARC ‘7)
ICFUS = ICHAR(7+
ICHIN = TCHARC '~
ICFES = ICHAR(7

ol
)
)

IFAREN
IFOINT

0
1

i

LNL
Ni.

ILENC NAMLSTY 8)
LNl + 2

(9]

D3 1 I = 1sNTEXT
1 TEXTC 13T) = 7 7

ISTRNG = LEN(STRING)
LC = TLEN(STRING ,» TISTRNG)

IF{ STRINGC 1:1) W NE. 7 7) THEWN
IFC STRINGC 31) EQ. ‘C’) THEN
PRINT %y STRING(13LC)
FRINT %, '/
GO TO 9999
ELEE +F(¢ STRINGC 131) LEQ., 7E’ JAND. L JEQ. L1) THEN
PRINT %, STRING(1iLC)
FRINT %, '/
IECHO = 1
ELSE IFC L +EQ. 1) THEN
FPRINT %»’ ERROR - COLUMN 1 WKUST EITHER RE BLANK, HAVE A /
3 ‘XCx> OR AN <E> /
PRINT %s7
ISTAT = 1
GO TO 9999
ELSE
FRINT %,/ ERROR - COLUMN 1 MUST BF RLAMK 7/
PRINT %»’ ~’
ISTAT = 1L
GO TN 9999
ENRIF
ELSE IF(STRING(1:1) EG. ’* / +AND, IECHO .EQ, 1) THEN

FRINT &y STRINGC(1:LC)
FRINT X’

ENDIF

72

oo (] Ly L] O 0

¢ Ry Xy! O

aagon

IFC L +EG. 1) THEN

IF(STRING(212) .NFE. '8’) THEN
FRINT %y’ SRROR - DOLLAR SIGN RERUIREN IN COLUMN 2 ¢
FRINT %9’ ’
ISTAT = 1
GO TO 9999
ENDIF

NDS = INBEX(STRINGC JILC) » 8")

IF{ NRBS .NE+. 0) NOS = NDS +

tJ3

ELS

m

NDS = INDEX(STRING(2ILC) 300}
IFC N3 NE, O) NIDS = NGS + 1

-

ENDIF

IF¢ NDIS +EQ. 0) THEN

Ls = LC
ELSE

LS = NBS
ENDIF

TEST TO SEE IF THE FROFER NAME OF THE NAHELIST IS FOUND IN THE

STRING IN THE RIGHT FLACE.
IFC L +EQs 1) THEN

IF¢ STRING(3:NL) «NE. NAMLST) THRN

FRINT X5’ ERROF - ‘,NAMLSTs’ NOT FOUND BETUEEN CNHLUMNS
3 NLs” o+ ‘s STRINGC LINL)

PRINT %’ ¢

ISTAT = 1

GO TN 9999
ENDIF

TEST TO SEE IF A BLANK FXISTS AFTER NAMLST IN STRING.

IF(STRINGC NL+1:NL+1) JNE. ’/ ’) THEN

PRINT %,/ ERROR - COLUMN AFTER ‘s»NANLST»’ MUST BE BLANK

% STRING(1:INL+1)
FRINT X9/ /
ISTAT = 1
6N 7O 9999

ENDIF

SET STRING FOINTER(NL) TO FRCGFFR FOSITIOM FOR THE FARSER

NL = NL + 2
ELSE
NL = 2

73

»

»

THRU' s

’,

’

[y}

aOoOOOn L]

coOoo

0O o]

[}

L 9]

s RvErioNyRe]

ENDIF
CONTINUE
THIS SECTIDN.PUTS TOGETHER A STRING OF CHARACYERE 70O FORM A
GUANTITY TO &E LLATER NETERMINED IF THE QUANTITY 15 IN THE
LIST NAMLIS,
DO 20 I = NL»LS
TEST TO SZ= JF ANY LEADING BLANKS RXIST#IF €0 INCREMENT
IFC STRINGC IdI) L8R, * 7 ANl TEXTO 331) Jg2G., © 7) BO TO Z¢
IFC STRING(IIT) +EQ. ‘%7 +ANR. T FQs L8) THEN

IFC TEXT(L11) JNEW 7 7) THEN
FRINT ¥, ERROR - NOT FINTSH READING THE QUANTITY WHEN ’»

4 ‘INFUT LINE WAS TERMINATEDN ‘sSTRING(L3~7:LS)
ISTaT =1
GO TO 2999
ELSE
GO TC 9999
ENRIF
ENDIF

ICHS = ICHAR(STRINGC T:I))

TEST TO SEE IF THE CHARACTER STRING STARTS WITH AN INTEGER, IF SO
THEN ITS AN ERROR.

IFC L +EQ., 1 Y THEN

IF((ICHS .GE. ICO ,AND. ICHS .LFE. IC?) .ANR., TEXT(1:1) .EQ. 7 7))

3 THEN
PRINT X,/ ERROR - QUANTITY CANNOT START WITH A NUMRER /»
] STRING(T:31+7)
PRINT %9’ ¢
ISTAT = 1
GO TO 9999
ENDIF

ELSE JF({(ICHS .6F., ICO .ANR., ICHS .LE, IC?) .OR,

2 ICHS +EQ. ICQYU .0OR. ICHS .&EUW. IGCCHM .OR,

3 ICHS .EQ. ICFOS .OR., ICHS .EQ., ICHIN .OR.

t ICHS .F1. ICPER) .ANI, TEXTI{1:1) LEQ. 7 7) THEN
IEQUAL = 1
NL = 1
GO 70 210

ENDIF

FIRST TEST 70 SEE JF THE CHARACTER {TRING(XX) X8 SFTUFEN 06~29
ANTt A=>27 IF S0 CONCATENATE. TF NOT THEN TEST TO SEF IF AN EMEBENDER
OR A TRAILING EBLANK EXISTS.IF S0 CONCATOMATF. IF NOT THEN TEST TO
SRE TF THFE QUANTITY STARTS WITH A SYMROL.IF S0 - ERROR. IF NOT
THEN DETERMINE JF ANY CHARACTER FOLLOWS THE QUANTITY 70 TERMINATE

74

et s e

o

O

SEARCH ANUT CONCATENATION,

IFC (ICHS .GE. IGO0 +AND. ICHS JLE. TCT) JOR.

4 ¢ TCHS .G&. 1CA .ANTI. ICHS JLE. IC7)) THEN
IFC TEXTC 131) LEQ. 7 /) THEN
TEXTC 131) = STRING(131)
IL =1
ELSE
TEXT = TEXTC 11Xl)//STRINGC Il)
IL = TL + 1
ENDIF

ELSE JTF(STRINGC I) JEQ. ¢ AND, TEXTC 3131 3 WNF. 7 %) TrArN

TEXLT

EXTE 43X)//8TRINGS 13T)
IL L+

-
1
13 a
A i

ELSE IF(STRING(I!I) LEQ. ‘¢’ +OR, STRINGC TIT) EGs 737)

IF(XPAREN ,£Q. O) THEN

IFC STRINGC T3T) JEQ. “(’ ITHEN
TEXT = TEXTC t:IL)//STRING(IT)
IL = Il + 1
IFPAREN = IPAREN + 1
ELSE IF(STRING(I!I) «EQs 7)) THEN
FRINT %y’ ERROR - MISSING LEFT PARAENTHESIS ’»
2 STRING(I-9:1)
FRINT %» 7/
ISTAT = 1
G0 TN 9999
ENDIF

ELSE IF(TFAREN +EQ. 1)THEN

IF(STRINGC II) .FG. “(’) THEH
FRINT %y’ ERROR - MISSING RIGHT FARENTHESIS
3 STRING(I-93T
FRINT %¢7 *
ISTAT = 1 .
GO TO 9957
ELSE IF(STRING(I!I) .ER. ’)’ ITHEN
TEXT = TEXT¢ 1310)//STRINGC 131)
IL = IL + 1
IPAREN = IPAREN + 1
ENDIF -

ELSE
FRINT %y’ ERROR -~ POSSIRLY TOND MANY FARENTHERTS >
2 ' STRINGC 1-9:1)
PRINT %y’ /
ISTAT = 1}
G0 70 9999
EMNDIF

ELSE TF(STRING(IT) JNE., / 7 AND, TEXTC 131) JEG. 7 ') THEN

»

75

-

ZF{ STRINGC INT) JNE. ‘»’) THEN
PRINT %»s’ ERROR = RUANTITY STARTING WITH A SYMEOL ‘.

3 STRINGC ItI+7)
FRINT %»’ 7
ISTAT = 1
60 TO 9999
ENDIF
c
ELSE
IFC STRINGS IX) WNE. 7 “.ANA. TRXT(1231) JHE., 7) 68 70 30
ENDIF
c
20 CONTINUE
e
IF(NOS .F89. Q@) THEM
L =1L +1
GG 70 9999
EMOIF

390 =’ TNUE

c
c
€ SET PCIM7ER TO LAST FPOSTTION WHICH IS WHERE THE NEXT CHARACTER
c BEGING(MOST LIKELY AN EQUAL SIGN).

c

NL
LT

nn
L]

LENC TEXTHNTEXT)

AFTER FINDING FARENTHESIS THIS INDNICATES THAT AN ARRAY FELEMENT IS
BEING SFECIFIED. THEREFORE,CONVERT THE CHARACTER STRING WITHIN THE
FPARENTHESIS T0O AN INTEGRER NUMBER.

oo

IF(IFAREN .EQ. 0) GO TO 35

L]

IF(IPAREM NE. 2) THEN
FRINT %,‘ ERROR - PARENTHESTS MISSING IN THE STRIMG ‘s TFXT(iILT)
PRINT %»’ ~’ ’
ISTAT = 1
GO0 T 999%
ELSE
CALL ELEMNT(TEXT(131.T) » LT » IFOINT » ISTAT)
IF(ISTAT .MNE. 0) GO TO 9999
IPAREN = 0
ENDIF
c
33 CONTINUE

DETERMINE WETHER ANY BLANKS EMBEDRED WITHIN THE QUANTITY. IF €0
THEN ITS AN ERROR.

QOO0

N o= INDEXC TEXTC L3LT 5 »7 7)

Lo

IF¢ N WIEs 0) THEN
PRINT %s’ ERROR ~- CAM NOT HAVE BLANKS EMBENDRHD WXITHIH THE NAME’»

2 TEXTC¢ 13:LT
FRINT *:7 ’
ISTAT = 1
60 TG 9999

ENUIF

SEARCH FOR THE QUANTITY IN THE LIST MNAMLIS., IF NOT FOUMD - FRRQOR

cOG

76

00 100 I = 1)NVAR

IFC TEXT(13LT) JEQ. NAMLISC T)) GO TO 200
100 CAONTINUE

c
PRINT #»‘ ERROR - COULDR NOT FIND > ‘»TEXTCI3LT)s’ < IN NAHFLIST
PRINT %,* *
ISTAT = 1
60 TN 9999
c
200 CONTINUE
c
INL = I
IZOUAL = 0
NUM = 0
ITRXT = 0
L3
IFC IPGINT JLE. NRIM2C TNL) LAHD, IFOINT JGE. MBEZMAC TN))
& THEN
LTEXT = IPOINT - NDIMLC TNL)
IPOINT = 1
c
ELSE
c
PRINT %»’ ERKOR - SPECIFIED ARRAY ELFHMENT OUT OF BOUNDS ‘s
% ‘FOR THE ARRAY ‘sNAMLISC INL) »* .~
FRINT *»’ THE LOWER AND UFPER ROUNNS ARE “»
g NDINLC INL) 5 BIN2C INL)
FRINT *»’ CHANGE THE ARRAY ELEMENT /»XPOINTs’ TO FIT’»
3 / WITHIN THE SPECIFIED LINITS.
JISTAT = 1
60 TO 9999
c
ENDIF
c
C FIND THE CHARACTER,INTEGFR OR REAL STRING AND STORE TN THE
C AFFROFRIATE LOCATION TO BE LATER USET RY THE MAIN ROUTINZ.
c
210 CONTINUE
¢
NJ = ISTZ(NDIKICINL) s NBIM2CTNL))
c
NTCI = NCHAR + NINTG
c
IFC TNL JLE., HCHAR) THEN
c
POINTR = CPOS(INL)
CALL FNDCHR(STRINGsICHR(POINTR)y ITEXToLSsLTsNLsNJs TFGUAL:
% NUMs ISTAT)
c
IFC ISTAT LEQ. 1) 60 TO 9999
W
ELSE IFC INL .37, NGHAR .AND. JNL +iF. NTGI) THEN
c
II = INL - NCHAR
POTINTR = TFOS¢ 11)
CALL FNDINTC STRING » THTBRC POINTR) » COATA » FPAT 9 HBAT o
3 NIDAT » ITEXT 5 LS » LT » NIy NJ » IEQUAL »
% NUM » FSTAT)
c
IFC TSTAT JEQ, 1) GO TO 9999
c

77

ELSE IF¢ INML BT+ NTCQI) THEN

c
II = JNL - NTCIZ
FOINTR = RFPOS{ II)
€CALL FNDRL(STRING » REALSS FGINTR) » CDATA » ADAT » NDAT o
§ NRIAT » ITEXT » L3 » LT » HLL ¢ NJ » IEQUAL »
% NUM » ISTAT)
L
IF¢ ISTAT +EQ. 1) 80 71O 9999
c
ENDIF
c
€ IF THE POINTER I3 AT THE &N GF THF INFUn STRING i.0,9 THE FARSTHE
c OF THF INFPUT STRING HAS REEN COMPLETEZD THEN G0 TO 9729 70O THE HAIN
> nOUTINc. OGTHERWISE, GO TG $FFF T8 ThHT nranNINu AND SEARCH FOR TifF
< NEXT QUANTITY, ETC.
c
DO 215 I = 1sNTEXT
215 TRXTC 131)y = 7 7
c
IF ¢ NL 7. L8) GG TO 10
c
CO.Q‘V.OO‘Q'00""0‘.6‘0‘000.l..‘b.."."'000.OQOQOOOCQOOOVOOQll“....“'
c

C IF THE SECOND DOLLAR SIGN WAS NOT FOUNR THEM INCREMENY THE LINE
c COUNTER(*L*), OTHERWISE, RESET THE LINE COUNTER 70 ONE(L1) AND THE
c ECHO PARAMETER TO ZERO(Q).
COQ.OO..CO‘.'Q0.0‘0‘0‘0000‘0.‘0.0‘00.0‘00.000000.‘0000.0.000.0'00000‘000
c
IF¢ NRS .FQ. O) THEN
L=©L+1
RETURN
ENDIF
c
9999 CONTINUE
c
L =1
IECHD
ITEXT

non
o

RETURN
END

78

SUBROUTINE FNDCHR(STRING ¢ IC » ITEXT » LS » LT » L » NJ »
3 IFQUAL » NUM » ISTAT)
CRARKHEKKEREKAKKK IR KKK KKK KKK KRR KRR KKK KKK KKK KK ALK KR KR KKK EE KA KK

THIS SUBROUTINE FINDS A CHARACTER VALUE ANR STORES IT IN THE
APPROFRIATE ARRAY("If").

INFUT?
STRING - CHARACTER ESTRING 0OF LENGTH °*L&8*.
LS - LENGTH OF CHARACTER STRING.,

LT - LENGTH QF THE QUANTITY WHICH IS FQUIVALRNCER TG TRF
ARRAY *IC*.

i€ - CHARACTER ARRAY CONTAINING THE INFUT CHARACTER VALUE,
UIMENSIONERD TO °*NJ*.

L -~ POINTER TN THE STRING °*STRING®., AT THE ENi OF THE
ROUTINE IT’S UPDATED TO RETURN THE NEW POSITION.

HJ -~ DIMENSION OF THE ARRAY IC

c
c
c
C
c
c
c
c
c
€
c
c
c
c
c
c
c
C
c
c
CRAKRRRKAIKOR KKK KK IORKRKR KKK KKK KKK KKK KK KK REKKKKKLKKKKKK KKK KKKKKKK
c
CHARACTERX (%) STRING » IC
CHARACTERX20 TEXT
c .
PARAMETER(NTEXT = 20)
c
DIMENSION ICC NJ)

c

CHORRKKEKKIKK KKK KK KK KKK KKK KKK KK KKK KK KKK KKK KKKKKKAKK KKK KKK KKAER KKK KKK
CRXXXRIKRKICIRAEIORKR I KKK KR KKK KK KA K KKK KKK AR KKK KKK KK KKK KKK KKK K KKK KKK
c

ICO = ICHAR(70/)
IC? = TCHARC 797)
c
DO S I = LsNTEXT
S TEXTC 13T) = 7 ¢
c
Ie2 = 0
c
IL=L~LT -1
c
10 CONTINUE
c
DO 100 I = L,sLS
€
C CHECK FOR BRLANKS. IF S0 - INCREHEIT.
c
IFC STRINGC IT) JEG. ¢ °) GO TO 10C
c
€ LOOK FOR AN EQUAL SIGN AFTER THS RUANTITY, IF NOT THERE OR 0iHER
€ GCHARNCTER TS THERF(ZXCLUUINL BLAMKS) TRBEN [T/S AN <2ZKOR.
c
IF(STRING(XI0T) .EQG. ‘=) THEK
IEQNAL = L
50 TO 109 . :
ERUGIF , , . - -

0ooo00n

s RrEel

[y} 0O o0 Doto O

ooan

lrBeByRel

IF EQUAL SIGN FOUND THEN NOW SEARCH AND FIND THFE CHARACTER NFERER FAOR
THE INFUT.

IF¢ IEGUAL JRQ. 1) THEM
IF A4 COMMA FOLLOWS AN EQUAL SIGN THEN IT‘S AN ERROR.

IFS STRINGC IT) JEQ. “»7) THEN
IF¢ ITEXT .EQ. 0) THEN
FRINT *»,’ ERROR - COMMA IN WRONG FPOSITIGN ‘»
2 STRINGC ILIX)s’ <=7
FRINT X»’
ISTAT = 1
RETURN
ENDITF
GO TO 1090
ENDIF

IF(STRINGC ItL) JEQ., ‘8’) THEN
IFC ITEXT +EQ. 0) THEN
PRINT %s’ ERROR - DOLLAR SIGN IN WRONG FOSITION
2 STRING(ILIX)s’<-7
FRINT %,’ *
ISTAT = 1
RETURN
* ENDIF

L=1
RETURN

ENDIF

CHECK FOR A QUOTE ~ INDICATFS CHARACTER VAILUFE AHEAN AMD FIND THE
CHARAGTER STRING USING ROUTINE °*CHRVAL®.

ICHS = ICHAR(STRING(II))
IF¢ STRINGC IT) EQ. ‘7’’’)THEN

CALlL CHRVAL(STRING » T » L8 » IQ2 » ISTAT)
IFC ISTAT .EQ. 1) RETURN

ML = JQ2 - T - 1

NUM = O INDICATES THAT THE CHARACTER VALUF WILL NOT RZ MULTIFLIED RY
AN INTEGER., THERFORE, CHARACTER VALUES W(LlL. RE EXFECTEN.

IF(NUM .EQ. O) THEWN
ITEXT = ITEXT + 1

ITEXT COUNTS THE NUMBER OF CHARCATER VALUES, IF ITS GREATER THM THE
SFECTFIFT NIMENSTON OF THE ARRAY THEN 17'S AN ERRDOR,

IF{ ITFXT .GT. NJ) THEH
FRINT %,/ ERROR - TOO MaNY VALUES FGR ‘»STRING(ILIL

FRINT %, *

ISTAT = 1

RETURN
ENDIF

80

o (4] (9]

(360

i

G Cc oD

o]

o]

IC{ ITFXT) = STRINGC 1#1iiQ2-1)

ELSE

RO P4 0 = ITATO ITELT
I 0 Y - STRINGC T+13IQR2-1)

CONTINUE
NUM = 0
ENRTF

SET NFYH POINTER FOSITICGH WITHIN "STRING' BND G0 BACK TO THE REGINNING

L= It £ 1
£ T 10

ETFANINE IF A CHARACTER STRING IS PRECRASD RY AN INTEGRR ANHN A
HULTIFLICATION SIGN INRTIGCATING THAT THE CHARACTER VALUE WILL EE
ETORE2 TN THE ARRAY *IT* THE AMOUNT GIVEM 2Y THE INTEGBER.

ELSE IF(ICHE +GE. ICO .AND, ICHS JLE. 1C?) THEN

IFC TEXTC 138) JEQ. 7 *) THARN
TEXTC 121) = STRINGC XX)
Ju =1

ELSE
TEXT = TEXTC 1:dL)//STRING(1%)
Jioo= 0L o+ 1

ENDIF

ELSE TF(STRINGC TII) JER. 7%’) THEN

IFC TEXTC 181) JFEQ. 7) THEN

PRINT X,’ ERROR ~ NEER AN INTZGER 0 MULTIFLY /-
4 ‘CHARACTER VYALUE “,8TRING(ILIX+7)7/ <~
PRINT %.°
ISTAT = 1 -
RETURN
ELSE

CALL CONVERC TEXTC 13JL) » VAR » ISTAT
IF(ISTAT +EQ. 1) RETHRN

ITXTO
ITEXT

ITEXT + 1
JTEXT + INT(VaR)

IFC ITEXT +GT. NJ) THEN
FRINT X»” ERROR- TOO MAMY VALUES FOR ‘+STRING(ILIX+77
PRINT s’ *
ISTAT = 1
RETURN
ENDIF

NUM = 1

pg 30 Ja -
TEXT¢ J¢

Lt A

1oNTEX
J0)

ENOIF

ELSE IF(TEXTCLIL) JME, 7 ¢ JAND. STRIHGC I3X) WHE, "X’) THF#

81

)

&]

)

[

c

c

&

FRINT %»’ WARMNING -~ FOSEIRLE ERROR ‘»8TRINGS IL

FRETINT X2’

~t

TEXT JLE+ NJd) THEN
I
URN

n
Tt 6

ENRIF

EMGIF
ELSE
FRINT *s’ ERROR - WRONG CHARACTER OR EQUAL
STRING(ILIZ+1)

FRINT %,
ISTAT = 1
RETURN

ENDIF

100 CONTINUE
o

~

g

L =1LS

RETURN
END

82

SIGN

e
bod

HISSING

SUBRCUTINE FNDINT(STRING » IC » CDATA » IDAT » NDAT » NIDAT »
b4 TTEXT » L3 » LT » L » NJ » IEQUAL +» NUM
] ISTAT)
CRRRKKRAKKKKA KKK KKK KKK KRR KA KKK ACK KKK KKK KKK KKK KK R KR KRR KKK R

THIS SUBROUTINE FINRS AN INTEGER VALUE FROM THE INPUT CHARAGTER
STRING *3TRING®. THIS ROUTINFE ALLOWS THE USER TO SFECIFY
ALFHANUMERIC CHARACTERS FOR THE QUANTITY WHICH WILL THEN RF
LONVERTED TO UNIQUE INTEGER VALUES.THIS PART 1S ACCOMPILISHED 1IN
SUBROUTINE CCI,

INFUT/OUTRUT

STRIWG - CHARACTER VARIARLE OF LENTH *L&* CONTAINING
INFUT CHARACTER STRING.

-t
X
i}

LS - LENGTH GF CHARACTER STRING,

COOOO0O0000000

LTEXT - LENTGHT OF THE QUANTITY WHICH IS EQUIVALEND TG THF
ARRAY “ILC*.

IT - INTEGER ARRAY CONTAINING THZ AFPROPRIATE VALUES FOR
THE SFECIFIED QUANTITY.

L ~ POINTER IN THE STRING *STRING®, AT T{HE FNI QF THE
ROUTINE *L.* IS UPUATED TN RETURN THE HEW FOSTTION.

NJ - DIMENSION OF THE ARRAY *IC*.
CDATA - CHARACTER ARRAY CONTAINING THE CHARACTER
REFRESENTATION OF VARIOUS VALUES,
CDATA DIMENSIONEDR TQ °*NDATY,

IDAT -~ INTEGER ARRAY CONTAINING THE RESPECTIVE INTRBEX
VALUES., DIMENSIONER TO *NIGAT".

NDAT - TOTAL NUHMBER OF VALUES{ INTEGFR AND REM. 3} IN 7dE
ARRAY *LISTA’.

NIDAT ~ TOTAL NUMBER OF IMTEGER VALUE3 IN THE ARRAY *XDAT',

KKK LCRRREEKIRI AR KRR E R KKKKKE K EK KKK LK K KRR IR KKRERRE RN RAR KKK

QOO0 OoOO00O00O00OoO00NO0CONCe

CHARACTER* (%} STRING » CDATA
CHARACYERX20 TEXT

FARAMETER(NTEXT = .20)
>

DIMENSTION IC{ NJ) s CRATAC NBAT 7 » IDATC HIDAT)
C
CRKRKEREXAKKKEELEKLKKKKRKEKK KKK ARK R AL RAKEKCKR KKK KK LK KXY RLKER KR K
CREXXLLRKKKKLX KK KKK KKE KKK LRI KL LI KEKLKKKRKE X KX KKy A XT Kok L H KK LK

<

00 S5 I = §)MTEXT
S TEAT¢ 121) = 7
£ .
ICO = [CHAR("¢’)
IG? = ICHAR{ /%7)
- - IGHE = [GHAR(f=-+)
- ICFS = TCHART '+’)
c -

83

[y R e N el [N o]

(9]

[y No Ry Ne]

I]

10

IG2 =0
IL=L~-1L7 -1
CONTINUE
0BG 100 I = LsLE
IF¢ STRINGC IsT) +F@Q. 7 ¢) GO 7O 100
IF(STRINGC II) +EQ. ‘=’) THEN
ISGUAL = 2

GG T9 100
ENDIF

n

THE EQUAL SJTGN HAS BEEN FOUND THEN FInp THE INTEGFR VALUER.

[od

IF(IEQUAL +EG, 1) THFEN
DETERMINE IF THE CHARACTER IS A NUMRER. IF S0y CONCATONATRE.
ICHS = TTHARC STRING(I:1))

IF(¢ ICHS .6GF, ICO +AND. ICHS .LE+ IC%?) .OR.

] ICHS +EQ., ICPS ,0R. ICHS .EQ. ICMS) THEN
IF(TEXT(181) +EQ. ¢ 7) THEN
TEYT(131) = STRINGC 121)
J -1
ELSE
TEXT = TEXT(13JL)//STRINGC I3X)
JL = UL+ 1
ENDIF

CHECK FOR COMMA. IF NOTHING IN TEXT -~ ERROR.OTHFRWISE,CONVERT S8TRING
TQ TINTEGER.

ELSF IF(STRINGC I!I) LEQs ’»’ LORe STRINGC IZX) +EQ. ‘37)
b THEN

IF(IQ2 +EQ. 9999) THEN
Ia2 = 0

IF(STRINGC T:T) +EQs “»7) GO TO 100
IF(STRINGC I:X) LEQ. ’3’) THEN
L=1
RETURN
ENDIF

ENDIF

IFC TEXTC 351) JERs 7 ¢ JAND. STRINGC IS1) JEQ. 797)
] THEN
FRINT %,/ ERROR - NO VALUE FOUND FRIOR TO REACHING A /»
% *COMMA /s STRINGS TLII)’ S~/
PRINT Xy *
ISTAT = 1
RETURN
ENDIF

84

IF¢ TEXTO 133) LEQ. ° 7 JAND. STRINGC IX) ER. '3)
g THEN
FRINT %»° FRROR - NG VALUE FOUND PRIOR ¥4 REACHING & “»
3 'NOLLAR SIGN ‘/sSTRINGC ILIT Js° <=
FRINT k:’ °
ISTAT = ¢

RETURN
ENRIF
b
€ NUM = 0 INDICATES NO MULTIPLTCATION OF VALUF BY INTFGER.
L
LF¢ NUM JEQ. 0) THEN
I
ITFAT = JTEXT = 1
C
1F¢ ITEXT JGT, NJ) THEN
PRINT %9/ ERROR = TOO MANY VALUES FOR /:STRINGC Il 3
FRINT %,’ ¢
ISTAT = 1
RETURN
ENDIF
c
CALL CONVER(TEXT(13Jh) » VAR » ISTAT)
c
IF(ISTAT +EQ. 1) RETURN
c .
IC{ ITEXT) = INT¢ VAR)
c
DO 70 J = 1:NTEXT
20 TEXTL J3d) = ¢ ¢
c
ELSE
C n
Cakl. CONVERC TEXTC $S1) 9 VAR 2 ISTAT)
C
IF{ TSTAT +FR. 1) RETURN
c
IVAR = INT(VAR
c
RO 30 J = ITXTOsTTRXT
I0C 3) = TUAR
30 GONTINUE
»
NUM = ¢
c
DO 40 J = 1yNTEXT
40 TEXTC J8d) = ¢ ¢
c
ENDSF
>
C RESET FOTINTER AMD GO TO REGIHNING TO FIND ANOTHER VALUFC $F UY)
c
IFC STRIUG (I3) .EQ. 737 3 THEN
L=1
RETUAN
ENDIIF
v
Le T + 1
GD T0 10
c
CIF *%x* FOUND THEN CRNVERT TEXT TO YHTESLAR AND MULTIFLY 2Y THE UPCOHING

85

VALUE,

e N o]

ELSE JF{ STRING(I!I) JEQ. "%’) THEN
IFC TEXFC 131) JER. ' 7) THEN
PRTNT X»’ ERROGR - INTEGER RFQUIREN 7 » STRING{ ILIT)

’
g P e
FRINT X»° *
ISTAT = 1
RETURN
ENDIF
C
RL = TLENC TEXT » MNVEXY)
c
Ao INREXC TEXTO LKL 2 2 7=)
[
IF¢ N JNF. O) THEN
FRINT %¥»’ EREQOR - CAaMN NGT HULTIPLY BY NEJATIVE INTEGER '»
H TEXTL LKL)
FRINT X»’ /
ISTAT = 1
RETUARN
ENDIF
c
CALL CONVERC TEXTC(1:!KL) s VAR » ISTAT
Cc
IF¢ ISTAT EQ. 1) RETURN .
c
ITATOG = ITEXT + 1
ITEXT = ITEXT + INT(VAR)
c
IS¢ TTEXT +G7. NJ) THEN
PRIMT %’ ERROR - TOO MANY VAILUES FOR ‘»STRINGY 1LIT)
FRINT %,7 7/
%STRT = 1
KETURN
ENDIF
c
NUM = 1
00 &0 J = 1 »NTEXT
460 TEXT¢ Jtd) = ¢ 7
c
C IF QUOTE FOUND THEN FINR THE CHARACTER VALUE CONVERT IT TO A UNIQUE
c NUMBER USING ROUTINE *GCI*.
c
ELSE TF(STRINGC Ti!T) JEGQG. 777) THEN
C
Ccal.l. CHRVALC STRING » X » LS » IQ2 » XSTAT)
[
IFC ISTAT EQ. 1) RETURN
C
Cal.l CCI ¢ STRINGC Ti1X02) » YUAR » COATH »IRAT » NINT »
2 NINAT » I8TAT)
C
IF(ISTAT G, 1) RETURN
c .
IFC HUd JEQ., O) THEM
Cc
ITEXF = ITEXT + 4§
c

IFC ITEXT LGT. MJ) THEN -
FRINT X:’ ERROR ~ TGO MaMY VALUES FOR /,ETRIIGE fLi5

86

FRINT %,

ISTAT = 1

RETURN
ENBIF

ICC ITEXT » = IVAR

ELSE
¢
00 8¢ 0 = ITTXTOLITEXT
I0C J) = IVAR
3¢ CONTINUE
c
MUM = 2
C
ENRIF
o
L= IQ? + 1
IQ2 = 9979
c
60 TH 10
v .
ELSE IF¢ TEXTC(1:1) JNF. 7 7 LANR. STRING(XX) JilF. ‘%’) THEN
PRINT %X’/ WARNING ~ POSSIRBLE ERRGR ‘»STRINGC MY)5 2=’
FRINT %,* /
[
L =1
RETURN
c
ELSE
[
IF¢ ITEXT JLE. NJ) THEN
L =1
RETURN N
ENNRIF
c e
ENDIF
c
ELSE
c
PRINT %y’ ERRGR - WRONG CHA&RACTER OR EQUAL SIGN MIS3ING 7»
% STRING{ ILST Do’ <=7
PRINT X’ *
ISTAT = 1
RETURN
c
ENDIF
100 CGCONTINUE
[
L = i8S
>
RETURN
END

87

SUBROUTINE FNDRLC STRING » IC » GRATA » RDAT » NDAT » NRDAT »

% ITEXT » LS » LT » L, » NJ » TEQUAL » NUH
& ISTAT)
CARKKKKKRKKKKKKKKKEKKKKKKKKRKKKEK KKK KKK LRERKRRRBRKKAOKEKE KRR RR RN K
c
€ THIS SUBROUTINE FINDS AN INTEGER VALUE FROM THE INFUT CHARACTER
c STRING *STRING". THIS ROUTINE ALLOWS THE USER 0 SPECIFY
c ALFHANUMFRIC CHARACTERS FOR THE QUANTTITY WHICH WILL THFN AE
[N CONVERTER TO UNIQUR INTREGZR VALUES.THIS FART 13 ACUOMFILISHRET IN
€ SUBRGUTIMNE CCIL.
c
c INFUT/QUTRUTS
c
c STRING - CHARACTER VARTARLE OF LEUTH *L8° COHTAINING THE
€ INFUT CHARAGCTER STRING.
M
c LS - i.ENGTH OF CHARACTER STRING.
c
c LTEXT -~ LENTGHT QF THE OQUANTITY WHICH T8 EQUIVALENR TO THE
c ARRAY *IC*.
c
c IC - INTESER ARRAY CONTAINING THE AFFROFRIATE VALUES FQOR
c THE SFECIFIED QUANTITY.
c
c L - FOINTER IN THE STRING *STRING'. AT THE ENR OF THE
e ROUTINE °*L* IS UFDATER TO RETURN THE NEW POSTTION.
c
c NJ -~ DIMENSION OF THE ARRAY *JC*.
c
c CDATA - CHARACTER ARRAY CONTAINING THE GHARAGCTER
c REFRESENTATION 0OF VARIQUS VALUES,
c CDATA DIMENSIO~ERD TO °*NDAT*,
c
c RDAT - REAL ARRAY CONTAINING THE RESFECTIVE REAL
c VALUES, NIMENSTINNER T0O °*NRRAT®.
c
c NDAT = TOTAL NUMEER OF VALURSC INTEGER AND REAL 7 TN THE
C ARRAY “CUATA®,
c
c NRIAT - TOTAL NUMBER OF RE#&lL VALUES TR THE ARRA'C *RDAT’.
c .
CRARKAK AR K KKK KRK AR KKK KK KKK KKK KK KKK KK KKK KKK KRR KRR KRR KKK K
c

CHARACTERX (%) STRING » CDATA
CHARACTERX20 TEXT

c
REAL IC .
c
FARAMETER(NTEXT = 20)
c
DIMEMSION ICC NJ) » CDATA(NDAT) » RRAT(NRDAT)
C

CREERRRKKKRKKCORKNKEKKKKKKEKKEKEKKKEK KK IOK KKK KR KKK R KRR RIORR KRR KK
CREXKEICKKK KKK KKK K KKK KKK KK KKKAKKKKKIKKKKKKKKKEK KKK KKK KKK KKK KK MK KK KK
c .
00 § T = L9HNTEXT
S TEXTC 121 5 = 7 7
c
ICO = ICHAR(70’)
IC? = TCHAR(‘9’)
ICHS = ICHAR("=’)

88

o0

[y Rl vl v

O

e B NyNe

o

G

CPS = TCHAR(“+°)
CPER = [CHAR(*,’)

b
o5
B8]
]
(=]

IL =L - LT~ 1
CONTINUE
60 100 T = L,sLS
IFC STRINGC J!T) JEQy 7 7) GO TO 1006
IF{ STRINGS T3L) +&Qs =’)} THFN
IEQuUal. = 3
G0 70 100
ENDIF
IF THE EQUAL SIGN HAS BEFN FOUNRD THEN FIND THE REAL VAlUES,
IFC¢ TEQUAL F3, 1) THEN

NETERMINE IF THE CHARACTER IS A NUMBER, IF SQ» DETERMINE WHETHER XT7'S
A ZERO. IF S0, ERROR;QTHERWISE CONCATONATE.

ICHS = IGHAR(STRING(TiI))
IF¢ ¢ ICHS +GE. ICO +AND. ICHS J.E. IC?) JOR,
4 ICHS .EQ. ICHS +OR., ICHY LEQ. ICFS LOR.
3 ICHS +EQs ICPER) THEN

IFC TEXTC 131) JEQ. 7 ’) THEN
TEXTC 121) = STRINGC I!I)

JL = 1

ELSE
TEXT = TEXTC 3:dL)//7STRINGC ItI)
Joo= UL+ 1

ENDIF

CHECK FOR COMMA., IF NOTHING IN TEXT -~ FRROR.OTHERWISE,CONVERT STRING
T0 REAL.

ELSE JF(STRINGC I:X) «EQs ‘2’ +QR. STRINGC XX 3 +EQ. 87)
3 THEN

IFC IQ2 +EQ., 9999) THEN
Ig2 = 0

IFC STRINGC ItI) JEQ. 79’) GO TO 100
IF(STRINGC X:T) .EN. ‘3’) THEN

L =1
RETURN
ENDIF
ENOIF
IFC TEXTC 331) oFQ. © 7 JANR. STRINGC I:T) JEQ.e 797)
% THEN
FRINT %y’ ERROR - NQ VALUF FOUND FRTOR TO REACHING A ‘»
] TCOMMA o STRINGS ILIT)y’ <=/

89

ISTAT = &

RETURN
ENOIF
c
IFC TEXTS i1)y LEQ. 7 7 LNR. STRIHGC IT) JEQ. 3’)
3 THEN
FRINT %>’ ERROGR - NO VALUR FOUNR FRIGR TO REACHING 0 ‘s
3 'ROLLAR SXGIl /sSTRINGC ILIX 557 =’
FRINT %»° ’
I3TAT =1
RETURN
ENRIF
c
C NUM = 0 INDICATRS H0 HULTIFLICATION OF VALUE 2y INTIGER.
e
IF{ NUM LEQ. O) THEN
n
ITEXT = ITEXT + 1
¢
IF(ITEAT GV, NJ) THEN
PRINT Xy’ ERRGR -~ TOO HANY VALUES FOR /H,STRIHG(IiiX
FRINT X»’ °
1STAT = 1
RETURN
ENDIF
c
CALL GCONVER(C TEXTC 1300) » VAR » 18TAT)
c
IF(ISTAT +EQ. 1) RETURN
ICC ITEXT) = VAR
00 20 J = 19NTEXT
20 TEATC J2a)y = 7 ¢
c
ELSE
»
CALlL CONVERC TEXTC(1:3JL) » VAR » ISTAT)
¢
IFC ISTAT +EQs 1) RETURN
c
BO 30 J = ITXTOLITEXT
ICC J) = VAR
30 CONTINUE
c
NUM = 0
c
00 40 U4 = 1sNTEXT
40 TEXTC J3J) = ¢ ¢
c
ENDTF
c

€ RESET FOINTER AMR GO TO BEGTHNING TO FUIA ANOTHER YalUg! IF ANY)
c
IFC STRING ¢ X1) VRE. 737) THEN
L =1
RETURM
ENNIF

L=I+1
GG TO L0

90

GoOonn

O

[y}

690

GO0

o

IF *“%* FGUN

val.UE .,

m

L&x

“r

a3

IF GUOTF F
NUMAER U

ELESE

1

s UFLOMING

O THEMN CONVERT TEXT TO INTEGRR AN MULTIRLY EY TH

TFL STRIMGC IF) JFQ. ‘%7) THEWN

IFC TEXTC 131) JER. ’ ¢) THEN

FRINT Xr/ ERRGR - INTEGFR REQUIRER ‘ , STRING(TLiI :»

L4 o ?
FRINT 497 *
ISTAT = 1

RETURN
ENIIIF

KL = ILFM¢ TIXT 5 HTZXT)

o= INBEX(TEXTL 19IKL) et

-

IF{ M WJNE. ¢) THeN
FREINT X, 7 ERROR - CAH NOT MULTIFLY RY NESATIVE IHTEGER /»
TEXT{ 1:RL)
PRINT Xy’ 7
ISTAT = 1
RETURN
ENDTF

N = INDEXC TEXTC LKL) » 707)

IFC N +NE. O) THEN
FRINT X»‘ ERRGR - LOOKING FOR AN INTEGER MOT & REAL 7»
‘NUMRER ‘¢ TEXTC L1IKL)
PRINT %y’ '/
ISTAT = 1
RETURY
ENDTF

CaLl CONVER{ TEXT(1IKL) +« VAR » ISTAT)
IF¢ ISTAT JEQ. 1) RETURN

ITATO
ITEXT

ITEXT + 1
ITEXT + INT(VAR)

IFC ITEXT «+6T. NJd) THEN
FRINT X»’ ERROR = TOO MAXY VALUES FOR ‘»STRINGC IL:XI)
PRINT %:7
ISTAT = 1
RETURN
ENDIF

NUM = 1

DO 60 J = 1sNTEXT
TEXTC J33) = 2 7

OUNA THEN FINDN THE CHARACTER VALUFE COHVERT JIT7 TO A UMNIQUF
SING ROUTINE *CCR*.

IF¢ STRINGC T2X) LEQ. 7777) THEN

Call. CHRVAL‘Y STRING » I ¢ LS » IQ2 » TSTAT)

91

IF{ ISTAT JEQ. 1) RETURN

c
Cat.l COR (STRINGC IIar s AR ¢ CRATA RIAT » HINT »
a NRDAT ¢ I8TAT)
c
IFL ISTAT LEQ. 1) RZTURN
c
IF{ NUM .2Q, 0)} THEN
N
ITEXT = ITEAT + 1
c
IF{ TTEXT 6T, dNJ) THEN
FRINT X»’ FRROR - TOO MANY VAILLLEZ FOR -STRING(IL X 3
FRINT %:°
ISTAT =
RETURN
ENRIF
g
IC(ITEXT) = VAR
c
ELSE
€
0O 80 J = ITXTO»ITEXT
ICC 4) = VAR
80 CONTTNUE
c
NUM = 0
c
EMDIF
€
L =12 + 1
a2 = 9999
€
GG TO 10
c
ELSE IF(¢ TEXT(1iL) MR, 7 7 LR, STRING(TiI ! JNE. ‘%’) THed
c
SRINT ¥’ WARNING - POSSIRLE ERROR 7»S8TRING{ IiLiX 79 <~
FRINT X:7 °
c
L =1
RETURN
c
ELSE
c
IFC ITEXT JLE. NJ) THER
L=1
RETURN
ENTITF
c
ENRIF
c
ZLEE
c .
PRINT %»’ FRROR -~ WROMG CHARACTER OR FQUAL SIOH HLESING 7
3 STRINGY Tl)’ <=7
FREINT %97
I37AT = 1
RETURN
c
ENDIF

92

100 CONTINUE

o

L = LS

(o]

RETURN
END

93

SUBROUTINE CHRVAL(STRING » X » IS » TQ2 » TSTAT)
CHARACTRER*(X) STRING
CRRKCRACKIOORRR AR KK KKK KKK KKK TR A KKK KKK KKK RKR KA R RK KK KKK KK ERFAKER KK
€
€ THIS SURROUTINE FINRS A CHARACTER VaLUF CHECKS IT AND MAKES SURE
c THAT LT IS8 CORRECT. IT RRTURNS THE VALUE OF THE SECOND QUOTE.
c
CRKRLKKRK R KR KKK RIKR KKK KRR KKK ACKH KKK KKK RACKRK K ACK AR KKK LKA K
c
NC = LS - 1
IG2 = INDEX(STRING(IHIINC) » 777)

IF{ IG2 +EQ. O } THEN
PRINT Xy "ERROR - MISSING SEOGHD QUOTE ‘» STRINGS IING)
& M
ISTAT = 1
RETURN
ENDIF

CHECK FOR EMBEDDED BLANKS WITHIN THE TWQO QUOTES.

aoua

IR2 = Ja2 + I

(9]

N = INDEX(¢(STRINGC I:XQ2) » 7 *)

[y]

IFC N +NE, O) THEN
PRINT *y‘ ERROR - CANNOT HAVE EMBEDRDED RLANKS ’»
‘IN CHARACTER VALUES “»
% STRINGC IIQ2) s 4=
ISTAT = 1
RETURN
ENDIF

[-L]

RETURN
END

94

SUBROUTINE CONVERC TEXT ¢ VAR » ISTRT)
CRRKXRXIRKKKKKKRKKKKKKXKKKKKXKKKERKKK KKK KKK KREKKKKKKKKKKKKKKRKKKKKKKKKS KK

c
C THIS SUBROUTINE WILL CONVERT AN ANSI REPRESENTATION GF A NUMRER TO
c AM ACTUAL NUMRER(INTEBER OR REAL - EXCLUDING “E* FORMAT).
c
, C INPUT/OUTPUT:
c
c TEXT - CHARACTER STRING WITH 1HF ANSJ RFPRESENTATION OF A
c NUMBER
c
c YaR = ACTUAL NUMERICAL VALUE REING RETURNER, IT CAil AF FITHER
o INTREGER OR REAL. FOR THE MOMENT A REAL NUMEER
c REFRESENTED RY 'E*' FORMAT IS NOT AUVAILABLE,
c
€ »rrr=NOTE: - THE ALGORITHM FOR THIS ROUTINE PROVIDED BY
c FRANK MANSFIELR OF NSHEC,CA.
c
CREEKKKKRRKKK LXK KEKKKEKKKKK AN KK KRR K KKK KKK KKK KKK KKK KKK KEKKKKKK
¢
CHARACTERK(X) TEAT
INTEGRER QIGIT
c
VAR = 0,0
c
ICO = ICHARC ‘0’)
c
N = LEN(TEXT)
NT = ILENC¢ TEXT »°N)
C
DO 10 I =1,NT
c
IFC TEXTC I:1) EQ. * 7) GO TO 10
c
IF{ TEXT(ItI) JFQ, ‘=’) THEM
c
NSTR = I + 1
SI6 = -1.0
c
ELSE IF(TEXTC¢ I:T) +ER. ‘+°) THEN
c
NSTR = I + 1
SIG = 1.0
c
ELSE
c
NSIR =1
SI6 = 1.0
¢
ENDIF
c
GO TO 20
c
10 CONTINUE
c
FRINT %)’ ERRGR - NO CHARACTER STRING FOUND TN TEXT =’ »TEXT(1INT)
ISTAT = 1
RETURN
c
20 CONT:NUE
c

95

o

100

L]

)

IF(NDEC .EQ.
NUEC = NT+1
ELSE
NDEC = NDEC
ENGIF

TEN = 0.1

00 100 T = NDEC-1+NSTRy»-1

QIGIT
TEN
VAR

ol

VAR
CONTINUE

TEN = 1.0

(]

MDEC = INDEX(TEXT(NSTRINT)

THEN

TCHARC TEXAT(C IdI))
LOLXTEN
+ TEHXDIGIT

00 200 I = NPEGCH+1,NT

DIGIT
TEN
VAR

CONTINUE
VAR = VARXSIG

RETURN
END

ICHARC TEXT(I:I))
0+1%XTEN
VAR + TENXDIGIT

H

’

.

co

- Ico

)

SUBROUTINE CCIC TEXT » IVAR » CRATA » IDAT » NRBAT » NIDAT » ISTAT)
KRKEKKKAOKKKKK KKK KKKKEKK KKK RKAK KKK IK KKK KRKKKK KKK KKK KKK KKK KKK KKK

c

C

c THIS SUBRRQUTINE CONVERTS CHARATER INFORMATION INTO UNIQUE JINTEGER
c VALUES RASE UFON THE ALLOWARLE INFUTS FOR THE RESIRETD QUANTITY.
c
c
c

KRKKKAKEKLKKKKKLERKKKEKKKKKKKKKKAKKKKLXKAKEKRKKKICKR KKK R R KKK KK

CHARACTERX(X) TEXT » CDATA
¢

DIMENSIQN CDATA(NRAT) » IDATC NIDAT)
€

N = LENC TEXT)

NT = ILENC TEXT » N 2

[

B0 10 I = 1,NBAT
IFE TEXTC 1412NT-1) JEQ. CDATR(T)}) 6O TO 20
10 CONTINUE

c
FRINT %,/ ERROR - 7»TEXTC L1INT)»’ NOT FOUND IN CDATA ARRAY /
ISTAT = 1
RETURN
c
20 CONTINUE
c
IFC I «GT. NIDAT) THEN
PRINT %»’ ERROR -~ TINCORRECT CHARACTER STRING ., EXPECTING 7.
H ‘ONE OF THE.E *
FRINT #%»(CDATAC J) »J =1sNIDAT)
FRINT X»’ INSTEAR RECEIVED THIS ‘»TEXT(13INT)
ISTAT = 1
RETURN
ENDIF
c
IVAR = TDAT(1)
c
RETURN
END

97

SUBROUTINE CCR(TEXT » VAR » CDATA » RDAT s NRAT » NRDAT » ISTAT)

SRR KKK KK KK ORI KKK XK KK 0K KKK KKK KKK KK XK MK K KK KK KKK KKK R KKk K

Oo0aaGo

THIS SURROUTINE CONVERTS CHARATER INFORMATIGN INTO UNIQUE RENL

VALUES RASER UFPON THE ALLOWARLE INPUTS FOR THE DRSIREN QUANTITY.

CREKAKKREKRKEKRKEKKLKKFKKKXKKKKREKKKEKKEKKKEKKKKKERKIOKKK KT KKK KKK KRR KL KRAXE

c

CHARACTERX (¥) TEXT r GRATA
RIHENSION GDATAC NDAT) » RRAT(NRAAT)

N = LENC TEXT)
NT = JTLIZINC TEXT » N)

0C 30 I = 1HNhAT
IFC TEXTC 1+13MT~1) LFQ. CRATAC I)) GG TQ 7O
CONTTINUE

FRINT X¥»% ERROR = “+TEXT{ $1INT)»’ NOT FOUNE IN CHATA ARRAY “
ISTAT = 1
RETURN

CONTINUE °

NIDAT = NDAT - NRDAT
IFC T .LE, NIDAT) THEN

N = NIDAT + 1
IFC NIDAT JEQ, NBAT) N = NDAT

PRINT %y’ ERROR ~ INCORRECT CHARAGCTER VALUE . EXFECTING * o
'ONE OF THESE '
PRINT %s{ CRATAC J) »d =N)NDAT)
PRINT %, INSTEAR RECETIVER THIS “»TFXT(1INT)
Is7aT = 1
RETURN
ENRIF

Il = I ~ NIDAT
VAR = RUAT(II)

RETURN
END

98

006000000009000()0000

aOoGaGo

CEXEXRXKF

SUBROUTINE ELEMNT(TEXT » LT » IVAR » ISTAT)

XK R KK KKK ORKICE IR KK AR KKK KOOI KK K FK KKK KK KKK KKK KKK KKk KK

THIS ROUTINE CONVERTS A CHARACTER STRING WITHIN A SET OF PARENTHESIS
TO AN INTEGZR NUMRBER INRICATING THE FOSTITION WITHIN THE SFECIFIRR
ARRAY,

INFUT/O0UTFUT?
TEXT ~ CHARTACTER STRING CONTAINING THE ARKAY HAME AND
THE ARRAY ELEMENT.
LT - CHARACTER LENGTH OF THE VARIARLE.

IVAR - TNTEGER NUMBER (FQRITIVE GR NFGARTIVE) REING
RETURNED TQ THE CALLTING ROUTINE, TNUICATING THE
ARRAY ELEMENT NESIREN,

ISTAT - ERROR FLAG 7 ¢ ~ NO ERRORj/ 1 - ERROR

KKK AR A KKK K KKK KKK KK KKK K KKKKEKKEKKEAKEKKKEKEKKKKKEK KKK KK F XK KR KKK K

CHARACTER® (k) TRXT
CHARACTERX32 NUM

]
-

po 11
(

~
~

ICHAR(
ICHAR(

‘0)
‘e)
ICHAR(=")
ICHARC 7+7)

-
O
x4
-
=
n o

L.OCATE FOSITION OF THE SET 0OF FARENTHESIS, THEN, USF
IN THE DO .OOF TO FIND THE CHARACTER STRING °NUM®
BE CONVERTED TO AN INTEGER VALUE ‘IVAR")

THESE VALUES
WHICH WilL THEN

NL
NR

INDEX¢ TEXT »
INDEX(TEXT »

)
7y’)

LT = NL - 1

DG 10 I = Ni.+1 » NR-1

{F¢ TEXTC IT) EQs 7 /) GO 7O 10

ICHS = ICHAR(TEXTC Il) D

IF¢ ¢ ICHS
% 1CHS

+GE,
+EQ.

ICO ANR,
ICHIN JOR.

ICHE
ICH3

IC?) OR,
ICFLS) THEN

LT

OERO

+EQs 4 7) THEN

IFC NUMC 181)
= TEXT(I)

NUMC 131)
IN=1
ELSE
NUM =
IN =
ENOIF

MUMC 10IN D//TEXTC 131)
W+ 1

ELSE

99

FRINT %’ ERROR - INCORRECT CHARACTAR WITHIN PARENTHESIR.’»
CHECK ’» TEXTC 13X)’

FRINT *»°
ISTAT = 1
RETURMN
ENQIIF
CONTINUE
CALL CONVER(NUM » VAR »
IF(TSTAT +NE. O) RETURN

IVAR = JNT(VAR)

RETURN
END

ISTAT)

<=7

100

10

FUNCTION TLENC TEXT » N)
CHARACTERX(X) TEXT

RO 100 T = Nelr=i
IFC TEXTC II) JNE. 7 7) GO TO 200
CONTINUE

ILEN = O

PRINT %,° WARNING - POSSIALE ZRROR. LENGTH OF TREXT
3 * I8 ZERQ ¢

RETURN

CONTINUE

ILEN =

RETURN

END

FUNCTION ISTZ(N1 » N2)
ISIZ = ¢
RO 10 I = N1 » N2

1817 = ISIZ + 1
CONTINUE

RETURN
END

101

SITRAT

